Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (8) : 617-629     DOI: 10.16511/j.cnki.qhdxxb.2020.25.023
SPECIALSECTION: FRONTIER RESEARCH AND APPLICATIONS OF TRIBOLOGY |
Development and prospects of liquid superlubricity
YI Shuang1, GE Xiangyu2, LI Jinjin1
1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Download: PDF(16331 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The rapid industrial development in China is requiring more energy consumption based on non-renewable energy resources. The energy consumption caused by unnecessary friction accounts for about 4.5% of the GDP in China. Many researchers in tribology are investigating superlubricity applications to reduce friction in machinery. Superlubricity improves the lubrication efficiency which reduces the energy consumption and considerably increases the energy utilization rate. This study reviews superlubricity characteristics and mechanisms for lubrication applications. The characteristics of recently developed liquids are reviewed with descriptions of the liquid superlubricity mechanism. Finally, the advantages and disadvantages of the current research on superlubricity are summarized.
Keywords friction      wear      lubrication      liquid superlubricity     
Issue Date: 17 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YI Shuang
GE Xiangyu
LI Jinjin
Cite this article:   
YI Shuang,GE Xiangyu,LI Jinjin. Development and prospects of liquid superlubricity[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 617-629.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.25.023     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I8/617
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] PERRY S S, TYSOE W T. Frontiers of fundamental tribological research[J]. Tribology Letters, 2005, 19(3):151-161.
[2] 张嗣伟. 关于我国摩擦学发展方向的探讨[J]. 摩擦学学报, 2001, 21(5):321-323. ZHANG S W. An approach to the developing ways of tribology in China[J]. Tribology, 2001, 21(5):321-323. (in Chinese)
[3] 温诗铸, 黄平. 摩擦学原理[M]. 第2版. 北京:清华大学出版社, 2002. WEN S Z, HUANG P. Principles of tribology[M]. 2nd ed. Beijing:Tsinghua University Press, 2002. (in Chinese)
[4] 王国彪, 赖一楠, 黄海鸿, 等. 机械工程学科2012年度科学基金管理工作综述[J]. 中国机械工程, 2013, 24(1):66-72. WANG G B, LAI Y N, HUANG H H, et al. Review on fund management of mechanical engineering discipline of NSFC in 2012[J]. China Mechanical Engineering, 2013, 24(1):66-72. (in Chinese)
[5] HIRANO M, SHINJO K. Atomistic locking and friction[J]. Physical Review B, 1990, 41(17):11837-11851.
[6] ERDEMIR A, MARTIN J M. Superlubricity[M]. Amsterdam:Elsevier, 2007.
[7] SUN C Q, SUN Y, NI Y G, et al. Coulomb repulsion at the nanometer-sized contact:A force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity[J]. The Journal of Physical Chemistry C, 2009, 113(46):20009-20019.
[8] HIRANO M, SHINJO K, KANEKO R, et al. Observation of superlubricity by scanning tunneling microscopy[J]. Physical Review Letters, 1997, 78(8):1448-1451.
[9] MATE C M, MCCLELLAND G M, ERLANDSSON R, et al. Atomic-scale friction of a tungsten tip on a graphite surface[J]. Physical Review Letters, 1987, 59(17):1942-1945.
[10] GONG Z B, SHI J, ZHANG B, et al. Graphene nano scrolls responding to superlow friction of amorphous carbon[J]. Carbon, 2017, 116:310-317.
[11] DONNET C, MARTIN J M, LE MOGNE T, et al. Super-low friction of MoS2 coatings in various environments[J]. Tribology International, 1996, 29(2):123-128.
[12] CHHOWALLA M, AMARATUNGA G A J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear[J]. Nature, 2000, 407(6801):164-167.
[13] 陈晓欢. 面接触条件下聚乙二醇的水基润滑特性研究[D]. 大连:大连海事大学, 2016. CHEN X H. Research on water based lubricating properties of polyethylene glycol as additive in surface contact[D]. Dalian:Dalian Maritime University, 2016. (in Chinese)
[14] GE X Y, LI J J, WANG H D, et al. Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid[J]. Carbon, 2019, 151:76-83.
[15] 李津津, 雒建斌. 人类摆脱摩擦困扰的新技术——超滑技术[J]. 自然杂志, 2014, 36(4):248-255. LI J J, LUO J B. New technology for human getting rid of friction:Superlubricity[J]. Chinese Journal of Nature, 2014, 36(4):248-255. (in Chinese)
[16] ZENG Q F, YU F, DONG G N. Superlubricity behaviors of Si3N4/DLC films under PAO oil with nano boron nitride additive lubrication[J]. Surface and Interface Analysis, 2013, 45(8):1283-1290.
[17] ZENG Q F, DONG G N, MARTIN J M. Green superlubricity of nitinol 60 alloy against steel in presence of castor oil[J]. Scientific Reports, 2016, 6:29992.
[18] ZHAO F, LI H X, JI L, et al. Superlow friction behavior of Si-doped hydrogenated amorphous carbon film in water environment[J]. Surface and Coatings Technology, 2009, 203(8):981-985.
[19] GE X Y, LI J J, LUO R, et al. Macroscale superlubricity enabled by the synergy effect of graphene-oxide nanoflakes and ethanediol[J]. ACS Applied Materials & Interfaces, 2018, 10(47):40863-40870.
[20] HAN T Y, ZHANG C H, LUO J B. Macroscale superlubricity enabled by hydrated alkali metal ions[J]. Langmuir, 2018, 34(38):11281-11291.
[21] GE X Y, LI J J, ZHANG C H, et al. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions[J]. ACS Applied Materials & Interfaces, 2019, 11(6):6568-6574.
[22] GE X Y, LI J J, ZHANG C H, et al. Liquid superlubricity of polyethylene glycol aqueous solution achieved with boric acid additive[J]. Langmuir, 2018, 34(12):3578-3587.
[23] WANG W, XIE G X, LUO J B. Superlubricity of black phosphorus as lubricant additive[J]. ACS Applied Materials & Interfaces, 2018, 10(49):43203-43210.
[24] LI J J, ZHANG C H, DENG M M, et al. Investigations of the superlubricity of sapphire against ruby under phosphoric acid lubrication[J]. Friction, 2014, 2(2):164-172.
[25] ZHANG C X, LIU Z F, LIU Y H, et al. Novel tribological stability of the superlubricity poly (vinylphosphonic acid)(PVPA) coatings on Ti6Al4V:Velocity and load independence[J]. Applied Surface Science, 2017, 392:19-26.
[26] WANG H D, LIU Y H, LI J J, et al. Investigation of superlubricity achieved by polyalkylene glycol aqueous solutions[J]. Advanced Materials Interfaces, 2016, 3(19):1600531.
[27] LI J J, MA L R, ZHANG S H, et al. Investigations on the mechanism of superlubricity achieved with phosphoric acid solution by direct observation[J]. Journal of Applied Physics, 2013, 114(11):114901.
[28] CHEN Z, LIU Y H, LUO J B. Superlubricity of nanodiamonds glycerol colloidal solution between steel surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 489:400-406.
[29] CHEN Z, LIU Y H, ZHANG S H, et al. Controllable superlubricity of glycerol solution via environment humidity[J]. Langmuir, 2013, 29(38):11924-11930.
[30] GE X Y, LI J J, ZHANG C H, et al. Superlubricity of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid induced by tribochemical reactions[J]. Langmuir, 2018, 34(18):5245-5252.
[31] LI K, ZHANG S M, LIU D S, et al. Superlubricity of 1, 3-diketone based on autonomous viscosity control at various velocities[J]. Tribology International, 2018, 126:127-132.
[32] GE X Y, HALMANS T, LI J J, et al. Molecular behaviors in thin film lubrication-Part three:Superlubricity attained by polar and nonpolar molecules[J]. Friction, 2019, 7(6):625-636.
[33] MA W, GONG Z B, GAO K X, et al. Superlubricity achieved by carbon quantum dots in ionic liquid[J]. Materials Letters, 2017, 195:220-223.
[34] TOMIZAWA H, FISCHER T E. Friction and wear of silicon nitride and silicon carbide in water:Hydrodynamic lubrication at low sliding speed obtained by tribochemical wear[J]. ASLE Transactions, 1987, 30(1):41-46.
[35] XU J G, KATO K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction[J]. Wear, 2000, 245(1-2):61-75.
[36] LI J J, ZHANG C H, LUO J B. Superlubricity behavior with phosphoric acid-water network induced by rubbing[J]. Langmuir, 2011, 27(15):9413-9417.
[37] LI J, ZHANG C H, MA L R, et al. Superlubricity achieved with mixtures of acids and glycerol[J]. Langmuir, 2013, 29(1):271-275.
[38] MATTA C, JOLY-POTTUZ L, DE BARROS BOUCHET M I, et al. Superlubricity and tribochemistry of polyhydric alcohols[J]. Physical Review B, 2008, 78(8):085436.
[39] DE BARROS BOUCHET M I, MATTA C, LE-MOGNE T, et al. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies[J]. Journal of Physics:Conference Series, 2007, 89:012003.
[40] KLEIN J, RAVIV U, PERKIN S, et al. Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films[J]. Journal of Physics:Condensed Matter, 2004, 16(45):S5437-S5448.
[41] RAVIV U, KLEIN J. Fluidity of bound hydration layers[J]. Science, 2002, 297(5586):1540-1543.
[42] 瞿亮, 张国亮, 张凤宝. 聚合物刷的合成与应用研究进展[J]. 化学工业与工程, 2005, 22(6):461-466. QU L, ZHANG G L, ZHANG F B. Progress in synthesis and application of polymer brushes[J]. Chemical Industry and Engineering, 2005, 22(6):461-466. (in Chinese)
[43] RØN T, JAVAKHISHVILI I, HVILSTED S, et al. Ultralow friction with hydrophilic polymer brushes in water as segregated from silicone matrix[J]. Advanced Materials Interfaces, 2016, 3(2):1500472.
[44] ZHANG C X, LIU Y H, LIU Z F, et al. Regulation mechanism of salt ions for superlubricity of hydrophilic polymer cross-linked networks on Ti6Al4V[J]. Langmuir, 2017, 33(9):2133-2140.
[45] GE X Y, LI J J, LUO J B. Macroscale superlubricity achieved with various liquid molecules:A review[J]. Frontiers in Mechanical Engineering, 2019, 5:2.
[46] DE BARROS BOUCHET M I, MARTIN J M, AVILA J, et al. Diamond-like carbon coating under oleic acid lubrication:Evidence for graphene oxide formation in superlow friction[J]. Scientific Reports, 2017, 7:46394.
[47] LI J J, ZHANG C H, DENG M M, et al. Superlubricity of silicone oil achieved between two surfaces by running-in with acid solution[J]. RSC Advances, 2015, 5(39):30861-30868.
[48] FUNG Y C, SKALAK R. Biomechanics:Mechanical properties of living tissues[M]. New York:Springer-Verlag, 1981.
[49] ZHANG L, LIU Y H, CHEN Z, et al. Behavior and mechanism of ultralow friction of basil seed gel[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 489:454-460.
[50] ARAD S, RAPOPORT L, MOSHKOVICH A, et al. Superior biolubricant from a species of red microalga[J]. Langmuir, 2006, 22(17):7313-7317.
[51] LI J J, LIU Y H, LUO J B, et al. Excellent lubricating behavior of Brasenia schreberi mucilage[J]. Langmuir, 2012, 28(20):7797-7802.
[52] FORSTER H, FISHER J. The influence of loading time and lubricant on the friction of articular cartilage[C]//Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 1996, 210(2):109-119.
[53] KITANO T, ATESHIAN G A, MOW V C, et al. Constituents and pH changes in protein rich hyaluronan solution affect the biotribological properties of artificial articular joints[J]. Journal of Biomechanics, 2001, 34(8):1031-1037.
[54] ESPINOSA T, SANES J, BERMúDEZ M D. New alkylether-thiazolium room-temperature ionic liquid lubricants:Surface interactions and tribological performance[J]. ACS Applied Materials & Interfaces, 2016, 8(28):18631-18639.
[55] BERMAN D, DESHMUKH S A, SANKARANARAYANAN S K R S, et al. Macroscale superlubricity enabled by graphene nanoscroll formation[J]. Science, 2015, 348(6239):1118-1122.
[1] GUO Weicheng, LIAO Yuantai, ZHANG Hongyu. Research progress in lubricating hydrogel coatings[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 381-392.
[2] PENG Yeping, KONG Deyu, ZHUANG Rongrun, WANG Song, CAO Guangzhong. Progress in the wear behavior investigation of artificial joint combination interfaces[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 409-420.
[3] HUANG Xiuling, ZHENG Ye, LAI Weiguo, ZHU Junjun, HUA Zikai. Measurement method of in vitro friction and wear of artificial ligaments[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 432-441.
[4] CEN Jiajia, ZHANG Dekun, CHEN Qin, ZHANG Xinyue, FENG Cunao, FENG Haiyan, CHEN Kai. The influence of synovial fluid components on the tribological behavior of “soft-soft” joint pair materials[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 454-470.
[5] WANG Qin, HE Di, GUI Liangjin, HU Zhiyu, PENG Jin, FAN Zijie. Calculation method of hypoid gear meshing efficiency of drive axles with considering system deformation[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 33-43.
[6] ZHANG Shousheng, ZHUANG Tengfei, FANG Xingxing, ZHU Hua, TANG Wei. Depth recognition thresholds of tactile perception for fine stripe texture of bar shapes[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 135-145.
[7] WU Shirui, WU Dan. Parameter identification for the LuGre friction model based on an area-specific shape analysis of the friction torque-velocity curve[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1500-1507.
[8] HE Xin, XUE Rui, ZHENG Xing, ZHANG Qian, GONG Jianliang. Skin friction reduction for boundary layer combustion in a scramjet engine[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 562-572.
[9] LI Xinxin, DU Xiangning, LI Yuanzhe, CAO Hengchao, TIAN Yu. Cavitation characterization simulation in connecting-rod bearings based on AVL-EXCITE[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 385-390,399.
[10] ZHANG Yuzhong, LIU Shiqiang, ZHANG Junchang, ZHU Rong. Coordination model for human lower limb motion[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 458-462.
[11] ZHANG Chang, TIAN Jiyin, GUO Dan, NIU Qingbo. Thermal characteristics of grease lubricated high-speed angular contact ball bearings with thermal deformation[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 482-492.
[12] YANG Zhiyong, LI Wupeng, ZHANG Yu, LI Zhiqiang, LI Weijing. Influence of stirring head structure on the defect formation mechanism in friction stir welding[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 374-384.
[13] SUN Yue, HE Ke, ZHANG Zhinan. Multi-source information fitting regression integrated model of coefficient of friction[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1980-1988.
[14] GUO Fei, CHENG Ganlin, ZHANG Zhaoxiang, HUANG Xing, JIA Xiaohong. Research progress on wear mechanism of hard materials worn by soft polymers[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 643-652.
[15] LI Yulong, HE Yongyong, LUO Jianbin. Surface modifications and performance enhancements of key friction pairs in aviation hydraulic piston pumps[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1405-1422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd