Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2020, Vol. 60 Issue (9) : 707-714     DOI: 10.16511/j.cnki.qhdxxb.2020.25.024
SPECIAL SECTION: ENERGY GEOSTRUCTURE AND ENGINEERING |
Tsinghua thermodynamic soil model for simulating energy engineering projects
CHENG Xiaohui1, ZHAO Naifeng1, WANG Hao2, ZHANG Zhichao1,3
1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore;
3. School of Civil Engineering, Chongqing University, Chongqing 400045, China
Download: PDF(1508 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Energy piles utilize pile foundations to exchange heat with the surrounding rock and soil to facilitate efficient use of shallow geothermal energy supplies. An energy pile design is given that improves the thermo-mechanical coupling of the soil with the energy pile. Specifically, this paper summaries the influences of temperature and stress on the volume change of saturated clays with evaluations of the thermo-mechanical constitutive models in the literature. A Tsinghua thermodynamic soil (TTS) model is then used in finite element simulations of the thermo-mechanical behavior of elevated temperature oedometer tests of Kaolin clay with an energy pile. The predictions show that heating reduces the bearing capacity of the energy pile foundation, the interfacial normal stress and the shear stress. The results also show that the interfacial shear stress increases with increasing temperature and foundation depth, while the interfacial normal stress changes little. Cooling reduces the energy pile-soil interface interactions, increases foundation settling and reduces the bearing capacity.
Keywords energy underground structure      thermal creep test      non-equilibrium thermodynamics      thermo-mechanical coupling      constitutive model     
Issue Date: 04 July 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Xiaohui
ZHAO Naifeng
WANG Hao
ZHANG Zhichao
Cite this article:   
CHENG Xiaohui,ZHAO Naifeng,WANG Hao, et al. Tsinghua thermodynamic soil model for simulating energy engineering projects[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 707-714.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.25.024     OR     http://jst.tsinghuajournals.com/EN/Y2020/V60/I9/707
  
  
  
  
  
  
  
[1] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6):1087-1094. GUI S Q, CHENG X H. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6):1087-1094. (in Chinese)
[2] LALOUI L, DI DONNA A. Energy geostructures:Innovation in underground engineering[M]. London:ISTE, 2013.
[3] AMIS T, ROBINSON C A W, WONG S. Integrating geothermal loops into the diaphragm walls of the Knightsbridge Palace Hotel project[C]//Proceedings of the 11th DFI/EFFC International Conference on Geotechnical Challenges in Urban Regeneration. HAWTHOME N J, KENT M I. Deep Foundation Institute. London, Britain:European Federation of Foundation Contractors, 2010.
[4] FRANZIUS J N, PRALLE N. Turning segmental tunnels into sources of renewable energy[J]. Proceedings of the Institution of Civil Engineers-Civil Engineering, 2011, 164(1):35-40.
[5] FRODL S, FRANZIUS J N, BARTL T. Design and construction of the tunnel geothermal system in Jenbach[J]. Geomechanics and Tunnelling, 2010, 3(5):658-668.
[6] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1):176-181. LIU H L, KONG G Q, WU H W. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1):176-181. (in Chinese)
[7] 江强强, 焦玉勇, 骆进, 等. 能源桩传热与承载特性研究现状及展望[J]. 岩土力学, 2019, 40(9):3351-3362, 3372. JIANG Q Q, JIAO Y Y, LUO J, et al. Review and prospect on heat transfer and bearing performance of energy piles[J]. Rock and Soil Mechanics, 2019, 40(9):3351-3362, 3372. (in Chinese)
[8] Ground Source Heat Pump Association (GSHPA). Thermal pile design, installation & materials standards[M]. Milton Keynes, UK:National Energy Centre, 2013.
[9] PARRIAUX A, TACHER L. Utilisation de la chaleur du sol par des ouvrages de fondation et de soutènement en béton. In Guide Pour la Conception, la Réalisation et la Maintenance[R]. Zurich, Switzerland:Architeets, 2005.
[10] 中华人民共和国住房与城乡建设部. 桩基地热能利用技术标准:JGJ/T 438-2018[S]. 北京:中国建筑工业出版社, 2018. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for utilization of geothermal energy through piles:JGJ/T 438-2018[S]. Beijing:China Architecture & Building Press, 2018. (in Chinese)
[11] ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al. Volume change behaviour of saturated clays under drained heating conditions:Experimental results and constitutive modeling[J]. Canadian Geotechnical Journal, 2007, 44(8):942-956.
[12] DI DONNA A, LALOUI L. Response of soil subjected to thermal cyclic loading:Experimental and constitutive study[J]. Engineering Geology, 2015, 190:65-76.
[13] SULTAN N, DELAGE P, CUI Y J. Temperature effects on the volume change behaviour of Boom clay[J]. Engineering Geology, 2002, 64(2-3):135-145.
[14] MONFARED M, SULEM J, DELAGE P, et al. A laboratory investigation on thermal properties of the opalinus claystone[J]. Rock Mechanics and Rock Engineering, 2011, 44(6):735.
[15] 白冰, 赵成刚. 温度对粘性土介质力学特性的影响[J].岩土力学, 2003, 24(4):533-537. BAI B, ZHAO C G. Temperature effects on mechanical characteristics of clay soils[J]. Rock and Soil Mechanics, 2003, 24(4):533-537. (in Chinese)
[16] 费康, 戴迪, 付长郓. 热-力耦合作用下黏性土体积变形特性试验研究[J]. 岩土工程学报, 2019, 41(9):1752-1758. FEI K, DAI D, FU C Y. Experimental study on volume change behavior of clay subjected to thermo-mechanical loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9):1752-1758. (in Chinese)
[17] PUSCH R. Permanent crystal lattice contraction, a primary mechanism in thermally induced alteration of Na bentonite[J]. MRS Online Proceedings Library, 1986, 84:791-802. DOI:1557/PROC-84-791.
[18] LALOUI L. Thermo-mechanical behaviour of soils[J]. Revue Francaise de Génie Civil, 2001, 5(6):809-843.
[19] ZHANG S, LENG W M, ZHANG F, et al. A simple thermo-elastoplastic model for geomaterials[J]. International Journal of Plasticity, 2012, 34:93-113.
[20] XIONG Y L, ZHANG S, YE G L, et al. Modification of thermo-elasto-viscoplastic model for soft rock and its application to THM analysis of heating tests[J]. Soils and Foundations, 2014, 54(2):176-196.
[21] CUI Y J, SULTAN N, DELAGE P. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal, 2000, 37(3):607-620.
[22] LALOUI L, FRANCOIS B. ACMEG-T:Soil thermoplasticity model[J]. Journal of Engineering Mechanics, 2009, 135(9):932-944.
[23] 姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型[J]. 中国科学:技术科学, 2011, 41(2):158-169.YAO Y P, YANG Y F, NIU L. UH model considering temperature effect[J]. Science China Technological Sciences, 2011, 54(1):190-202. (in Chinese)
[24] DI DONNA A, LORIA A F R, LALOUI L. Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads[J]. Computers and Geotechnics, 2016, 72:126-142.
[25] SURYATRIYASTUTI M E, MROUEH H, BURLON S. Understanding the temperature-induced mechanical behaviour of energy pile foundations[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3344-3354.
[26] LORIA A F R, LALOUI L. Thermally induced group effects among energy piles[J]. Géotechnique, 2017, 67(5):374-393. DOI:10.1680/jgeot.16.P.039.
[27] ZHANG Z, CHENG X H. A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(4):527-554.
[28] ZHANG Z C, CHENG X H. A thermodynamic constitutive model for undrained monotonic and cyclic shear behavior of saturated soils[J]. Acta Geotechnica, 2015, 10(6):781-796.
[29] ZHANG Z C, CHENG X H. A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics[J]. Computers and Geotechnics, 2016, 80:373-382.
[30] 邵玉娴. 粘性土工程性质的温度效应试验研究[D]. 南京:南京大学, 2011. SHAO Y X. Experimental study on temperature effect on engineering properties of clayey soils[D]. Nanjing:Nanjing University, 2011. (in Chinese)
[31] JIANG Y M, LIU M. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3):139-156.
[32] CEKEREVAC C, LALOUI L, VULLIET L. A novel triaxial apparatus for thermo-mechanical testing of soils[J]. Geotechnical Testing Journal, 2005, 28(2):161-170.
[1] XIE Hui, CHEN Ying, XIANG Yong, WANG Haoran, MA Fangping. Shear strength of dam abutment fractured rock weakens critical water pressure and statistical damage constitutive model[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1113-1123.
[2] YANG Weibo, YAN Chaoyi, ZHANG Laijun, WANG Feng. Heat transfer and thermal-mechanical coupling characteristics of an energy pile with groundwater seepage[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 891-899.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd