Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (1) : 50-56     DOI: 10.16511/j.cnki.qhdxxb.2020.25.029
Environmental Science and Engineering |
Influence of rainfall characteristics on runoff control of a sponge reconstructed community in a rainy city
Dingkun YIN1,Zhengxia CHEN1,Qian LI1,Haifeng JIA1,*(),Zhengquan LIU2,Lei SHEN3,Shakeel AHMAD1
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Beijing Branch, North China Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100081, China
3. Zhuhai Institute of Urban Planning & Design, Zhuhai 519001, China
Download: PDF(5065 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Runoff control and non-point source pollution reduction in a sponge reconstruction community in a rainy city were studied using online monitoring and model simulations of a typical community in the sponge city pilot area. The rainfall-runoff volume and the suspended solid (SS) concentration were monitored continually at the two outlets from the community. A storm water management model (SWMM) was used to simulate the runoff control and non-point source pollution reduction in the sponge city design. Then, the model parameters were calibrated and validated against a natural rainfall event during the monitoring period. The results showed that all of the Nash-Sutcliffe efficiency coefficients were greater than 0.71, which ensured the model accuracy. Finally, the model was used to evaluate the effect of total runoff control and non-point source pollution reduction for 2 scenarios "before" and "after" the sponge city construction. The results showed that the sponge city construction helped control the runoff volume and reduce the non-point source pollution. After the sponge city construction, the total annual runoff rate was 52.9% of the total rainfall, the annual runoff was reduced by 28.0%, and the pollutant load was reduced by 66.3%. Overall, the runoff rate exceeded 70% for 81 rainfall events. Extreme rainfall events and the rainfall characteristics for each rainfall event have varying degrees of influence on the rainfall control rates. The average rainfall control rate in this study area in 2009 was 86.5%. The average rainfall control rates were 79.9% for light storms and 88.2% for severe storms. The rainfall amount and the preceding dry period strongly influenced the runoff control capacity. The average rainfall control rates were 98.1% for a light rainfall (< 15 mm), 73.8% for a moderate rainfall (10~25 mm) and 52.9% for a heavy rainfall (> 25 mm). For rainfall events after dry periods of 6 days or more (15 events in total), the rainfall runoff control rate exceeded 90%. The rainfall duration and average rainfall intensity had little effect on the rainfall runoff control rate.

Keywords drainage engineering      sponge city      online monitoring      storm water management model (SWMM)      community scale      water quantity control      pollutant removal      rainfall characteristics     
Corresponding Authors: Haifeng JIA     E-mail: jhf@tsinghua.edu.cn
Issue Date: 26 November 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dingkun YIN
Zhengxia CHEN
Qian LI
Haifeng JIA
Zhengquan LIU
Lei SHEN
Shakeel AHMAD
Cite this article:   
Dingkun YIN,Zhengxia CHEN,Qian LI, et al. Influence of rainfall characteristics on runoff control of a sponge reconstructed community in a rainy city[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 50-56.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.25.029     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I1/50
  
10.16511/j.cnki.qhdxxb.2020.25.029.T001

降雨事件特征统计

降雨事件 降雨量/mm 降雨历时/min 平均雨强/(mm·min-1)
2019-05-31 24.2 161 0.15
2019-06-18 42.6 459 0.09
2019-06-25 35.4 141 0.25
2019-07-02 110.6 1 802 0.06
2019-07-31 47.2 396 0.12
  
  
  
10.16511/j.cnki.qhdxxb.2020.25.029.T002

关键参数取值

参数类型 序号 参数名称 参数值
不透水区水量参数 1 下渗曲线数值 55
2 不透水区Manning粗糙系数 0.01
3 不透水区初损填洼深度/mm 2
透水区水量参数 1 下渗曲线数值 98
2 透水区Manning粗糙系数 0.1
3 透水区初损填洼深度/mm 0.05
下渗参数 1 最大下渗速率/(mm·h-1) 30
2 最小下渗速率/(mm·h-1) 15
3 下渗速率衰减常数/h-1 1
4 饱和土壤到完全干燥土壤需要的时间/d 0.5
海绵设施参数 1 存储水深/mm 100
2 植被覆盖度/% 0.2
3 表面糙率-Manning系数n 0.24
4 土壤厚度/mm 250
5 孔隙度 0.6
6 田间持水量 0.2
7 凋萎点 0.1
8 传导度/(mm·h-1) 10
9 传导度坡度 10
10 土壤水吸力/mm 5
11 存储高度/mm 300
12 孔隙率 0.75
13 下渗率/(mm·h-1) 25
14 阻碍因子 0
15 排水系数 0
16 排水指数 0.5
水质参数 1 累积/冲刷曲线 EXP
2 绿地最大累积量 80
3 绿地速率常数/d-1 10
4 绿地冲刷系数 0.014
5 绿地冲刷指数 0.3
6 绿地清扫效率/% 0
7 绿地BMP效率/% 80
8 屋面最大累积量 65
9 屋面速率常数/d-1 3
10 屋面冲刷系数 0.014
11 屋面冲刷指数 0.8
12 屋面清扫效率/% 0
13 屋面BMP效率/% 0
14 路面最大累积量 500
15 路面速率常数/d-1 3
16 路面冲刷系数 0.018
17 路面冲刷指数 0.8
18 路面清扫效率/% 50
19 路面BMP效率/% 55

  注:表中海绵设施参数仅为研究区内雨水花园各结构层的参数配置,且植草沟的面层参数与雨水花园一致。由于无透水铺装具体结构层信息,因此使用模型默认值进行模拟。

  
10.16511/j.cnki.qhdxxb.2020.25.029.T003

不同降雨场次水量水质控制效果分析

降雨时间 海绵改造情景 产流体积/m3 SS负荷/kg 径流削减率/% 径流控制率/% SS负荷削减率/%
2019-05-31 改造前 286.8 1.82 30.3 51.6 22.9
改造后199.81.40
2019-06-18 改造前 618 10.12 18.3 30.5 67.9
改造后504.63.245
2019-07-02 改造前 1 239.6 88.96 20.1 47.5 78.3
改造后990.619.26
2019-07-31 改造前 237.6 41.59 94.4 98.4 96.6
改造后13.21.41
  
10.16511/j.cnki.qhdxxb.2020.25.029.T004

典型年降雨条件下研究区域排口的水量和水质改造前后变化

参数 数值
年降雨量/mm 2 000.6
区域面积/m2 17 048
年降雨体积/m3 34 110
年产流体积(改造后)/m3 16 070
年产流体积(改造前)/m3 22 330
年径流总量控制率/% 52.9
年径流总量削减率/% 28.0
年污染物负荷削减率/% 66.3
           
3 XU T , JIA H F , WANG Z , et al. SWMM-based methodology for block-scale LID-BMPs planning based on site-scale multi-objective optimization:A case study in Tianjin[J]. Frontiers of Environmental Science & Engineering, 2017. 11 (4): 1.
4 JIA H F , WANG Z , ZHEN X Y , et al. China's sponge city construction:A discussion on technical approaches[J]. Frontiers of Environmental Science & Engineering, 2017. 11 (4): 18.
doi: 10.1007/s11783-017-0984-9
5 中华人民共和国住房和城乡建设部,国家市场监督管理总局.海绵城市建设评价标准: GB/T 51345-2018[S].北京:中国建筑工业出版社, 2019.
5 Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Assessment standard for sponge city construction effect: GB/T 51345-2018[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
8 ELLIOTT A H , TROWSDALE S A . A review of models for low impact urban stormwater drainage[J]. Environmental Modelling & Software, 2007. 22 (3): 394- 405.
9 BISHT D S , CHATTERJEE C , KALAKOTI S , et al. Modeling urban floods and drainage using SWMM and MIKE URBAN:A case study[J]. Natural Hazards, 2016. 84 (2): 749- 776.
doi: 10.1007/s11069-016-2455-1
13 MORIASI D N , ARNOLD J G , VAN LIEW M W , et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007. 50 (3): 885- 900.
doi: 10.13031/2013.23153
14 YIN D K , EVANS B , WANG Q , et al. Integrated 1D and 2D model for better assessing runoff quantity control of low impact development facilities on community scale[J]. Science of the Total Environment, 2020. 720, 137630.
doi: 10.1016/j.scitotenv.2020.137630
16 GONG Y W , YIN D K , FANG X , et al. Factors affecting runoff retention performance of extensive green roofs[J]. Water, 2018. 10 (9): 1217.
doi: 10.3390/w10091217
[1] CHENG Xinyue, WANG Hao, LI Zhi, ZHOU Jinju. Urban LID layouts for controlling waterlogging based on OPUT[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 638-648.
[2] ZHANG Xiaoyue, LI Yue, WANG Chenyang, CHEN Zhengxia, JIA Haifeng. Layout methods of sponge source facilities for future community based on different needs[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1483-1492.
[3] WANG Xin, LIN Peng, HUANG Haodong, YUAN Jing, QIU Xu, LIU Xin. Scour dynamic properties and online monitoring of offshore wind power foundation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1087-1094.
[4] AN Ruinan, LIN Peng, CHEN Daoxiang, AN Bang, LU Guannan, LIN Zhitao. Temperature gradient monitoring and thermal evolution of a super mass concrete structure[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1050-1059.
[5] SHEN Yang, XU Yuanxin, WU Jing. Quantitative analysis of the impact of sponge city construction on housing prices with Suining city in Sichuan Province as an example[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 573-581.
[6] CHAI Yueting, YU Xiao, LIU Zhenming. Design and implement of a public service platform for e-commerce credible transaction guarantee[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(9): 802-807,820.
[7] LYU Heng, NI Guangheng, CAO Xuejian, TIAN Fuqiang. Quantitative evaluation of the role of roads in urban drainage and its influencing factors[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 906-913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd