Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (12) : 1341-1352     DOI: 10.16511/j.cnki.qhdxxb.2020.25.044
SPECIAL TOPIC:HEAT TRANSFER AND THERMAL SYSTEM FOR HEAT TRANSFER AND THERMAL SYSTEM FOR |
Research progress in transpiration cooling with phase change
XU Ruina, LI Xiaoyang, LIAO Zhiyuan, HU Haowei, ZHU Yinhai, JIANG Peixue
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(15534 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  With the increasing speeds and flight times of aerospace vehicles, the high heat fluxes caused by the aerodynamics and combustion have led to aircraft component temperatures that far exceed the material limits. Efficient, reliable thermal protection methods are then crucial in aerospace components. Transpiration cooling is an efficient active thermal protection method first developed in the 1940s that is used for thermal protection of conventional materials on ultra-high temperature/heat flux surfaces of aerospace vehicles. This paper reviews international and domestic research including that of the authors' team on transpiration cooling with phase change in the last several years. The flow and heat transfer mechanisms of transpiration cooling with phase change for subsonic and supersonic mainstream flows are explained. The biomimetic self-pumping and self-adaptive transpiration cooling method and its optimal structures are also presented. This paper also describes the optimization of transpiration cooling in typical thermal structures of aerospace vehicles. Advanced materials will be combined with transpiration cooling with phase change with non-uniform heat fluxes and extremely high temperatures in future designs to provide reliable high speed aerospace vehicles.
Keywords thermal protection      transpiration cooling      phase change      self-pumping      optimization     
Issue Date: 11 December 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Ruina
LI Xiaoyang
LIAO Zhiyuan
HU Haowei
ZHU Yinhai
JIANG Peixue
Cite this article:   
XU Ruina,LI Xiaoyang,LIAO Zhiyuan, et al. Research progress in transpiration cooling with phase change[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1341-1352.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.25.044     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I12/1341
  
  
  
  
  
  
  
  
  
  
[1] JACKSON T A, EKLUND D R, FINK A J. High speed propulsion:Performance advantage of advanced materials[J]. Journal of Materials Science, 2004, 39(19):5905-5913.
[2] SUTTON G P, BIBLARZ O. Rocket propulsion elements[M]. 9th ed. New Jersey:John Wiley & Sons, 2017.
[3] POLEZHAEV Y V. Will there or will there not be a hypersonic airplane?[J]. Journal of Engineering Physics and Thermophysics, 2000, 73(1):3-8.
[4] DUWEZ P, WHEELER JR H L. Experimental study of cooling by injection of a fluid through a porous material[J]. Journal of the Aeronautical Sciences, 1948, 15(9):509-521.
[5] HUANG Z, ZHU Y H, JIANG P X, et al. Investigation of a porous transpiration-cooled strut injector[J]. Journal of Propulsion and Power, 2015, 31(1):278-285.
[6] GLASS D E, DILLEY A D, KELLY H N. Numerical analysis of convection/transpiration cooling[J]. Journal of Spacecraft and Rockets, 2001, 38(1):15-20.
[7] KUNTZ R J, BLUBAUGH A L, LABOTZ R J, et al. Transpiration-cooled devices:3585800[P]. 1971-06-22.
[8] 刘伟强, 陈启智, 吴宝元. 典型结构的层板发汗冷却推力室传热特性的推算方法[J]. 推进技术, 1998, 19(6):15-19. LIU W Q, CHEN Q Z, WU B Y. Calculation method of heat transfer in platelet transpiration cooled thrust with typical structure[J]. Journal of Propulsion Technology, 1998, 19(6):15-19. (in Chinese)
[9] 丁亮. 烧结多孔介质材料发汗冷却的研究[D]. 合肥:中国科学技术大学, 2012. DING L. Investigation on transpiration cooling within sintered porous material[D]. Hefei:University of Science and Technology of China, 2012. (in Chinese)
[10] LIU Y Q, JIANG P X, XIONG Y B, et al. Experimental and numerical investigation of transpiration cooling for sintered porous flat plates[J]. Applied Thermal Engineering, 2013, 50(1):997-1007.
[11] 熊宴斌. 超声速主流条件发汗冷却的流动和传热机理研究[D]. 北京:清华大学, 2013. XIONG Y B. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[12] ZHU Y H, JIANG P X, SUN J G, et al. Injector head transpiration cooling coupled with combustion in H2/O2 subscale thrust chamber[J]. Journal of Thermophysics and Heat Transfer, 2013, 27(1):42-51.
[13] BÖHRK H. Transpiration-cooled hypersonic flight experiment:Setup, flight measurement, and reconstruction[J]. Journal of Spacecraft and Rockets, 2015, 52(3):674-683.
[14] KÖNIG V, ROM M, MVLLER S, et al. Numerical and experimental investigation of transpiration cooling with carbon/carbon characteristic outflow distributions[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(2):449-461.
[15] PROKEIN D, VON WOLFERSDORF J, BOEHRK H. Analysis of anisotropy effects for transpiration cooled CMC leading edges using OpenFOAM[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Glasgow, Scotland:AIAA, 2015.
[16] VAN FOREEST A, SIPPEL M, GVLHAN A, et al. Transpiration cooling using liquid water[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(4):693-702.
[17] HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental investigation of transpiration cooling with phase change for sintered porous plates[J]. International Journal of Heat and Mass Transfer, 2017, 114:1201-1213.
[18] WANG J H, ZHAO L J, WANG X C, et al. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant[J]. International Journal of Heat and Mass Transfer, 2014, 75:442-449.
[19] 黄干, 廖致远, 祝银海, 等. 高温主流条件下相变发汗冷却实验研究[J]. 工程热物理学报, 2017, 38(4):817-821. HUANG G, LIAO Z Y, ZHU Y H, et al. Experimental investigation of transpiration cooling with phase change in high temperature flow[J]. Journal of Engineering Thermophysics, 2017, 38(4):817-821. (in Chinese)
[20] 孟丽燕, 姜培学, 余磊, 等. 发汗冷却中流动与换热的数值模拟[J]. 工程热物理学报, 2002, 23(5):593-595. MENG L Y, JIANG P X, YU L, et al. Numerical simulation of fluid flow and heat transfer in transpiration cooling[J]. Journal of Engineering Thermophysics, 2002, 23(5):593-595. (in Chinese)
[21] 姜培学, 余磊, 任泽霈. 变物性与热辐射对发汗冷却过程的影响规律研究[J]. 航空动力学报, 2004, 19(2):184-190. JIANG P X, YU L, REN Z P. Influence of variable thermophysical properties and thermal radiation on convection heat transfer in transpiration cooling[J]. Journal of Aerospace Power, 2004, 19(2):184-190. (in Chinese)
[22] 余磊, 姜培学, 任泽霈. 发汗冷却换热过程的实验研究与数值模拟[J]. 工程热物理学报, 2005, 26(1):95-97. YU L, JIANG P X, REN Z P. Experimental investigation and numerical simulation of convection heat transfer in transpiration cooling[J]. Journal of Engineering Thermophysics, 2005, 26(1):95-97. (in Chinese)
[23] 孟丽燕, 姜培学, 蒋方帅, 等. 烧结多孔壁面发汗冷却换热的实验研究[J]. 清华大学学报(自然科学版), 2005, 45(11):1537-1539. MENG L Y, JIANG P X, JIANG F S, et al. Experimental investigation of the heat transfer for transpiration cooling through a sintered porous plate[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(11):1537-1539. (in Chinese)
[24] 姜培学, 任泽霈, 张左璠, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(I)数理模型[J]. 推进技术, 1999, 20(3):1-4. JIANG P X, REN Z P, ZHANG Z F, et al. Numerical simulation of heat transfer in transpiration cooled liquid rocket thruster chamber (I) physical mathematical model[J]. Journal of Propulsion Technology, 1999, 20(3):1-4. (in Chinese)
[25] 姜培学, 任泽霈, 张左璠, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(II)数值方法与计算结果[J]. 推进技术, 1999, 20(4):17-21. JIANG P X, REN Z P, ZHANG Z F, et al. Numerical simulation of heat transfer in a transpiration cooled liquid rocket thrust chamber (II) numerical method and results[J]. Journal of Propulsion Technology, 1999, 20(4):17-21. (in Chinese)
[26] LIU Y Q, JIANG P X, JIN S S, et al. Transpiration cooling of a nose cone by various foreign gases[J]. International Journal of Heat and Mass Transfer, 2010, 53(23-24):5364-5372.
[27] HUANG Z, ZHU Y H, XIONG Y B, et al. Investigation of supersonic transpiration cooling through sintered metal porous flat plates[J]. Journal of Porous Media, 2015, 18(11):1047-1057.
[28] JIANG P X, LIAO Z Y, HUANG Z, et al. Influence of shock waves on supersonic transpiration cooling[J]. International Journal of Heat and Mass Transfer, 2019, 129:965-974.
[29] SHI J X, WANG J H. A numerical investigation of transpiration cooling with liquid coolant phase change[J]. Transport in Porous Media, 2011, 87(3):703-716.
[30] HE F, WANG J H. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change[J]. Energy Conversion and Management, 2014, 80:591-597.
[31] 胡皓玮, 胥蕊娜, 姜培学. 多孔介质流动沸腾微观实验研究[J]. 工程热物理学报, 2021, 42(2):424-429. HU H W, XU R N, JIANG P X. Experimental investigation of flow boiling in porous media with micromodels[J]. Journal of Engineering Thermophysics, 2021, 42(2):424-429. (in Chinese)
[32] HU H W, JIANG P X, OUYANG X L, et al. A modified energy equation model for flow boiling in porous media and its application to transpiration cooling at low pressures with transient effect[J]. International Journal of Heat and Mass Transfer, 2020, 158:119745.
[33] DONG W J, WANG J H, CHEN S Y, et al. Modelling and investigation on heat transfer deterioration during transpiration cooling with liquid coolant phase-change[J]. Applied Thermal Engineering, 2018, 128(5):381-392.
[34] WU N, WANG J H, DONG W J, et al. An experimental investigation on combined sublimation and transpiration cooling for sintered porous plates[J]. International Journal of Heat and Mass Transfer, 2018, 116:685-693.
[35] WU N, WANG J H, HE F, et al. An experimental investigation on transpiration cooling of a nose cone model with a gradient porosity layout[J]. Experimental Thermal and Fluid Science, 2019, 106:194-201.
[36] 伍楠. 发散冷却关键问题的实验和数值研究[D]. 合肥:中国科学技术大学, 2019. WU N. Experimental and numerical investigations on the key problems of transpiration cooling[D]. Hefei:University of Science and Technology of China, 2019. (in Chinese)
[37] XIAO X F, ZHAO G B, ZHOU W X. Numerical investigation of transpiration cooling for porous nose cone with liquid coolant[J]. International Journal of Heat and Mass Transfer, 2018, 121:1297-1306.
[38] SU H, WANG J H, HE F, et al. Numerical investigation on transpiration cooling with coolant phase change under hypersonic conditions[J]. International Journal of Heat and Mass Transfer, 2019, 129:480-490.
[39] SHEN L, WANG J H, DONG W J, et al. An experimental investigation on transpiration cooling with phase change under supersonic condition[J]. Applied Thermal Engineering, 2016, 105:549-556.
[40] ZHANG B, HUANG H M, LU X L, et al. Experimental investigation on transpiration cooling for porous ceramic with liquid water[J]. Acta Astronautica, 2020, 167:117-121.
[41] 黄拯. 高温与超音速条件下发汗冷却基础问题研究[D]. 北京:清华大学, 2015. HUANG Z. Research on the transpiration cooling in supersonic and high temperature flow[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[42] 廖致远, 祝银海, 黄干, 等. 超声速主流平板相变发汗冷却实验研究[J]. 推进技术, 2019, 40(5):1058-1064. LIAO Z Y, ZHU Y H, HUANG G, et al. Experimental investigation of transpiration cooling on a porous plate with phase change in supersonic flow tunnel[J]. Journal of Propulsion Technology, 2019, 40(5):1058-1064. (in Chinese)
[43] JIANG P X, HUANG G, ZHU Y H, et al. Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling[J]. Bioinspiration & Biomimetics, 2017, 12(5):056002.
[44] HUANG G, LIAO Z Y, XU R N, et al. Self-pumping transpiration cooling with phase change for sintered porous plates[J]. Applied Thermal Engineering, 2019, 159:113870.
[45] HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental investigation of self-pumping internal transpiration cooling[J]. International Journal of Heat and Mass Transfer, 2018, 123:514-522.
[46] HUANG G, LIAO Z Y, XU R N, et al. Self-pumping transpiration cooling with a protective porous armor[J]. Applied Thermal Engineering, 2020, 164:114485.
[47] HUANG G, ZHU Y H, LIAO Z Y, et al. Biomimetic self-pumping transpiration cooling for additive manufactured porous module with tree-like micro-channel[J]. International Journal of Heat and Mass Transfer, 2019, 131:403-410.
[48] 祝银海, 姜培学, 孙纪国, 等. 液体火箭推力室面板发汗冷却与燃烧耦合数值模拟[J]. 工程热物理学报, 2012, 33(1):101-104. ZHU Y H, JIANG P X, SUN J G, et al. Numerical investigation of transpiration cooling coupled with combustion in the thrust chamber of liquid rocket[J]. Journal of Engineering Thermophysics, 2012, 33(1):101-104. (in Chinese)
[49] HUANG G, ZHU Y H, JIANG P X, et al. Investigation of inclined porous transpiration-cooled struts[J]. Journal of Spacecraft and Rockets, 2018, 55(3):660-668.
[50] 金韶山, 姜培学, 孙纪国. 液体火箭发动机喷管发汗冷却研究[J]. 航空动力学报, 2008, 23(7):1334-1340. JIN S S, JIANG P X, SUN J G. Investigation on the transpiration cooling of a liquid rocket nozzle[J]. Journal of Aerospace Power, 2008, 23(7):1334-1340. (in Chinese)
[51] 金韶山, 姜培学, 孙纪国. 发汗冷却喷管多孔壁面的分段设计分析[J]. 航空动力学报, 2008, 23(12):2346-2352. JIN S S, JIANG P X, SUN J G. Analysis of the subsection design of the porous wall of a transpiration cooling nozzle[J]. Journal of Aerospace Power, 2008, 23(12):2346-2352. (in Chinese)
[52] XIONG Y B, ZHU Y H, JIANG P X. Numerical simulation of transpiration cooling for sintered metal porous strut of the scramjet combustion chamber[J]. Heat Transfer Engineering, 2014, 35(6-8):721-729.
[53] JIANG P X, HUANG G, ZHU Y H, et al. Experimental investigation of combined transpiration and film cooling for sintered metal porous struts[J]. International Journal of Heat and Mass Transfer, 2017, 108:232-243.
[54] HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental study on combined cooling method for porous struts in supersonic flow[J]. Journal of Heat Transfer, 2018, 140(2):022201.
[55] HUANG G, ZHU Y H, HUANG Z, et al. Investigation of combined transpiration and opposing jet cooling of sintered metal porous struts[J]. Heat Transfer Engineering, 2018, 39(7-8):711-723.
[1] WANG Zhenyu, WANG Lei. Improved monarch butterfly optimization algorithm and its engineering application[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 668-678.
[2] WANG Bin, ZHANG Jiwen, WU Dan. Aerial assembly measurement and control analysis method based on robot modeling[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 724-737.
[3] CHEN Zhongcan, ZHANG Kai, LI Feng, ZHAO Yue, WU Jianhui, HE Qilian, CHEN Min. Application and research progress of transpiration cooling technology in flight vehicles[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 318-336.
[4] LIU Anbang, CHEN Xi, ZHAO Qianchuan, LI Borui. Optimization method for allocations of energy storage systems and tractions for metro systems[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1408-1414.
[5] ZHANG Xiaoyue, LI Yue, WANG Chenyang, CHEN Zhengxia, JIA Haifeng. Layout methods of sponge source facilities for future community based on different needs[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1483-1492.
[6] ZHANG Lin, WANG Jinyu, WANG Xin, WANG Wei, QU Li. Intelligent dispatching optimization of emergency supplies to multidisaster areas in major natural disasters[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 765-774.
[7] YU Zhijian, YANG Qianwen, WANG Yichen, YANG Dong, ZHU Min. Mechanism and design optimization of acoustic dampers for attenuating combustion instabilities[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 487-504.
[8] ZHANG Qingsong, JIA Shan, CHEN Jinbao, XU Yingshan, SHE Zhiyong, CAI Chengzhi, PAN Yihua. Configuration design and topology optimization of a single wing for the hybrid unmanned aerial vehicle[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 423-432.
[9] ZANG Jinrui, JIAO Pengpeng, SONG Guohua, WANG Tianshi, WANG Jianyu. Eco-driving evaluation and trajectory optimization based on vehicle specific power distribution[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1760-1769.
[10] DAI Xin, CHEN Jushi, CHEN Tao, HUANG Hong, LI Zhipeng, YU Shuiping. Multi-objective optimization method and case analysis for emergency drainage of pumped storage power station[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1558-1565.
[11] YAN Huihui, LI Haoyu, ZHOU Bohao, ZHANG Yuzhou, LAN Xudong. Research and optimization of the mechanism of centrifugal compressor[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1672-1685.
[12] WU Qingjian, WU Hongyu, JIANG Zhihong, YANG Yunqiang, YAN Shaoze, TAN Lijie. Control parameter optimization of underwater gliders for underwater fixed-point exploration missions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 62-70.
[13] LIN Jianxin, LIN Mengting, WANG Wandong, ZHANG Zhixuan. Review of the hierarchical facility location problem[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1121-1131.
[14] QI Geqi, ZOU Kaijie, ZOU Jie, LI Wenqian, CAO Jingxuan, WU Jiehao, ZHANG Wenyi. Feeder transit routing optimization of driverless electric buses for heterogeneous demands[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1178-1185.
[15] LIU Zibiao, LIN Junjiang, LI Hexin, HUANG Tianjiao, XU Wenbin, ZHUANG Yijie. Heat transfer in porous medium composite phase change materials with battery heat generation[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1037-1043.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd