Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (3) : 177-182     DOI: 10.16511/j.cnki.qhdxxb.2020.26.012
CABLE-DRIVEN ROBOTS |
Transfer characteristics of high-speed cable forces for spacecraft separation
HOU Senhao1, TANG Xiaoqiang1,2, SUN Haining1, CUI Zhiwei1, WANG Dianjun3
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
3. Beijing Institute of Petrochemical Technology, Beijing 102617, China
Download: PDF(3638 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Ground simulation tests of spacecraft separation require accurate force predictions as the key link in the tests. This study analyzed the cable force transfer during high-speed spacecraft separation tests. A dynamic model of the cable hoist system was developed based on Newton's laws. The second-order partial differential equation for the test function was then solved using spatial discretization. The solution predicted the force on the rope as it moved to study the factors influencing the force. The model accuracy was verified by numerical examples. The results show that the model can accurately simulate the force on the rope for high-speed spacecraft separation tests.
Keywords spacecraft separation      cable hoist system      dynamic model      high-speed cable force transfer     
Issue Date: 06 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Senhao
TANG Xiaoqiang
SUN Haining
CUI Zhiwei
WANG Dianjun
Cite this article:   
HOU Senhao,TANG Xiaoqiang,SUN Haining, et al. Transfer characteristics of high-speed cable forces for spacecraft separation[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 177-182.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.26.012     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I3/177
  
  
  
  
  
  
  
  
[1] BENDURA R J, LUNDSTROM R R, RENFROE P G, et al. Flight tests of Viking parachute system in three Mach number regimes. 2:Parachute test results:NASA TN D-7734[R]. Washington:NASA, 1974.
[2] EDQUIST K T. Computations of Viking lander capsule hypersonic aerodynamics with comparisons to ground and flight data[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Keystone, United States:AIAA, 2006:6137-6145.
[3] NEEB D, GVLHAN A, AUGENSTEIN E. Experimental study of ExoMars sub and transonic aerodynamics and heat shield separation in HST[C]//Proceedings of 7th European Symposium on Aerothermodynamics. Brugge, Belgium, 2011:11-19.
[4] 孙泽洲, 张熇, 贾阳, 等. 嫦娥三号探测器地面验证技术[J]. 中国科学:技术科学, 2014, 44(4):369-376. SUN Z Z, ZHANG H, JIA Y, et al. Ground validation technologies for Chang'E-3 lunar spacecraft[J]. Scientia Sinica Technologica, 2014, 44(4):369-376. (in Chinese)
[5] SCHAFFERS W J. The vibration of shaft ropes with time-variable length, treated by means of Riemann's method[J]. Journal of Engineering for Industry, 1961, 83(1):68-72.
[6] CHEN Y. On the longitudinal vibration of a moving elevator cable-car system[D]. Baltimore:University of Maryland, 2008.
[7] CHEN C Y. Lateral-axial coupling and boundary conditioning of vibrating strings and cables[D]. Montreal:Concordia University, 2007.
[8] DIAO X M, MA O. Vibration analysis of cable-driven parallel manipulators[J]. Multibody System Dynamics, 2009, 21(4):347-360.
[9] 包继虎, 张鹏, 朱昌明. 变长度提升系统钢丝绳纵向振动特性[J]. 振动与冲击, 2013, 32(15):173-177. BAO J H, ZHANG P, ZHU C M. Longitudinal vibration of rope hoisting systems with time-varying length[J]. Journal of Vibration and Shock, 2013, 32(15):173-177. (in Chinese)
[10] BAO J H, ZHANG P, ZHU C M. Modeling and control of longitudinal vibration on flexible hoisting systems with time-varying length[J]. Procedia Engineering, 2011, 15:4521-4526.
[11] ZHU W D, REN H. An accurate spatial discretization and substructure method with application to moving elevator cable-car systems-Part I:Methodology[J]. Journal of Vibration and Acoustics, 2013, 135(5):051036.
[12] BAMDAD M. Analytical dynamic solution of a flexible cable-suspended manipulator[J]. Frontiers of Mechanical Engineering, 2013, 8(4):350-359.
[13] WANG L, CAO G H, WANG N G, et al. Modeling and dynamic behavior analysis of rope-guided traction system with terminal tension acting on compensating rope[J]. Shock and Vibration, 2019, 2019:6362198.
[14] WANG N G, CAO G H, YAN L, et al. Modeling and control for a multi-rope parallel suspension lifting system under spatial distributed tensions and multiple constraints[J]. Symmetry, 2018, 10(9):412-419.
[15] ZHANG Q, YANG Y H, HOU T, et al. Dynamic analysis of high-speed traction elevator and traction car-rope time-varying system[J]. Noise & Vibration Worldwide, 2019, 50(2):37-45.
[1] LI Jian, WANG Shenghai, LIU Jiang, GAO Yufu, HAN Guangdong, SUN Yuqing. Dynamic modeling and robust control of cable-driven cleaning robot for marine multi-curvature bulkhead[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 562-577.
[2] LI Dongxing, HOU Senhao, SUN Haining, LI Fan, TANG Xiaoqiang. Test equipment for a parachute tear-band to measure the cable force dynamics[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 294-301.
[3] WANG Yutian, ZHANG Ruijie, WU Jun, WANG Jinsong. Evaluation of the dynamic performance fluctuations of a mobile hybrid spray-painting robot[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 971-977.
[4] TAN Tian, CHEN Kainan, LIN Qiuqiong, JIANG Ye, ZHAO Zhengming. Dynamic analysis and multi-objective parameter optimization in multi-receiver wireless power transfer systems[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1066-1078.
[5] Yutian WANG,Jiahao QIU,Jun WU,Binbin ZHANG. Dynamics of a three-axis loading mechanism for machine tool reliability tests[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(12): 1023-1029.
[6] XU Zhi, MA Jing, WANG Hao, ZHAO Jianshi, HU Yajie, YANG Guiyu. Key indicator and critical condition for the water resource carrying capacity in the Yangtze River Estuary[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(5): 364-372.
[7] YU Zhenyang, WU Jun, ZHANG Binbin. Energy consumption of a two-axis solar tracker with redundantly actuated parallel mechanism[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(4): 284-290.
[8] WANG Kai, LIU Ronghua, WEI Jiahua, LIU Qi, WANG Guangqian. Model integration methods in the hydro-modeling platform (HydroMP) based on cloud computing[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 1006-1015.
[9] WANG Xiaojian, WU Jun, YUE Yi, XU Yundou. Dynamic performance evaluation of a 2UPU/SP three-DOF parallel mechanism[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 838-846.
[10] YANG Fei, FU Xudong. 3-D hydrodynamic model using the spectral method in the vertical direction for bend flow simulations[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 914-920.
[11] ZHANG Binbin, WANG Liping, WU Jun. Dynamic isotropic performance evaluation of a 3-DOF parallel manipulator[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 803-809.
[12] YU Guang, WANG Liping, WU Jun, WANG Dong. Dynamic model and dynamic characteristics of a 3-DOF spindle with a parallel linkage mechanism[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1317-1323.
[13] Hui ZHANG,Changliang YU,Renche WANG,Peiqing YE,Wenyong LIANG. Parameters identification method for machine tool support joints[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 815-821.
[14] Heng FENG, Qinghai LI, Chao GAN, Aihong MENG, Yanguo ZHANG. One-dimensional hydrodynamic model of the recycling valve in a circulating fluidized bed[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 229-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd