Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (7) : 747-755     DOI: 10.16511/j.cnki.qhdxxb.2020.26.044
Research Article |
Thermal parameter inversion for various materials of super high arch dams based on the hybrid particle swarm optimization method
WANG Feng1,2, ZHOU Yihong1,2, ZHAO Chunju1,2, ZHOU Huawei1,2, CHEN Wenfu3, TAN Yaosheng3, LIANG Zhipeng1,2, PAN Zhiguo1,2, WANG Fang1,2
1. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China;
2. Hubei Key Laboratory of Construction and Management in Hydropower Engineering, China Three Gorges University, Yichang 443002, China;
3. China Three Gorges Projects Development Co., Ltd., Chengdu 610041, China
Download: PDF(5872 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Concrete thermal parameters during construction and laboratory tests can differ, so the particle swarm optimization (PSO) algorithm and optical fiber temperature monitoring data were used to identify the thermal parameters of the concrete for super high arch dams at low winter temperatures. Traditional PSO algorithms can easily fall into local extrema, so a swarm intelligence-hybrid particle swarm optimization (HPSO) model was developed in this study using a concave function weight decreasing strategy to avoid local extrema. HPSO combines PSO with genetic algorithm cross and mutation operations. These more effectively balance the algorithm global and local search abilities. HPSO was used for thermal parameter inversion searches of various strength concretes and concretes with various gradations with cooling water and a specified environmental temperature. The model considers the influences of multi-stage water flows and water temperature variations along the cooling water pipe. Examples show the effectiveness of the intelligent identification system and the quick convergence of HPSO. The inversion results clarify the relationship between the thermal parameters and the temperature changes.
Keywords thermal parameter      super high arch dam      inversion analysis      particle swarm optimization      crossover and mutation     
ZTFLH:  TV315  
Issue Date: 08 June 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Feng
ZHOU Yihong
ZHAO Chunju
ZHOU Huawei
CHEN Wenfu
TAN Yaosheng
LIANG Zhipeng
PAN Zhiguo
WANG Fang
Cite this article:   
WANG Feng,ZHOU Yihong,ZHAO Chunju, et al. Thermal parameter inversion for various materials of super high arch dams based on the hybrid particle swarm optimization method[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 747-755.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2020.26.044     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I7/747
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] TAN Yaosheng, CHEN Wenfu, LIN Ende, LIN Peng, ZHOU Tiangang, ZHOU Mengxia, LIU Chunfeng, PEI Lei, LIANG Cheng, SHANG Chao, YANG Pengbo, YAO Mengdi, LI Xiangqian, LI Junping. Research and practice of multidimensional information model for super high arch dam construction[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1884-1895.
[2] LIU Huasen, CHEN Ken, WANG Guolei. Optimization of transfer station parameters of a laser tracker based on the particle swarm algorithm for a large part experiencing 3D deformation[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 979-985.
[3] CUI Junyun, CHEN Di, YUAN Ye, MA Yuliang, WANG Guoren. Online route planning algorithm in spatial crowdsourcing[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 672-682.
[4] LI Shengqiang, TAN Ming, ZHANG Zhanbo. An optimization method of brachistochrone problem with viscous friction and its application in ADS design[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 563-569.
[5] CHEN Dongqing, ZHANG Puhan, WANG Huazhong. Intrusion detection for industrial control systems based on an improved SVM method[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 380-386.
[6] LI Ke, LIANG Manchun, SU Guofeng. Data assimilation method for atmospheric dispersion based on a Gaussian puff model[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 992-999.
[7] LIU Chengying, WU Hao, WANG Liping, ZHANG Zhi. Tool wear state recognition based on LS-SVM with the PSO algorithm[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 975-979.
[8] LUO Lei, CHEN Ken, DU Fengpo, MA Zhenshu. Surface fitting and position-pose measurements based on an improved SA-PSO algorithm[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1061-1066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd