Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (5) : 457-464     DOI: 10.16511/j.cnki.qhdxxb.2021.21.014
OSCILLATION STABILITY |
Wide-area measurement and early warning system for wide-band oscillations in “double-high” power systems
MA Ningning1, XIE Xiaorong1, TANG Jian2, CHEN Lei1
1. State Key Lab of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. State Grid East Inner Mongolia Electric Power Supply Co., Ltd., Hohhot 010010, China
Download: PDF(3069 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The wide-band oscillation problem caused by the high penetration of renewable energy sources and the high proportion of power electronic equipment, “double-high” systems, seriously affects normal power equipment operation and power system stability. Such systems require on-line monitoring and analyses of the multi-mode and time-varying wide-band oscillation frequency. Traditional wide-area measurement systems (WAMS) can monitor low-frequency oscillations in power grids in real-time. However, they cannot monitor wide-band electromagnetic oscillations. This paper presents a wide-area measurement and early warning system (WAMWS) for monitoring wide-band oscillations in “double-high” power systems. This system has all the functions in the existing WAMS while monitoring wide-band oscillations in “double-high” power systems. The warning system provides wide-band state estimates, oscillation source identification, and security and stability evaluations of the wide-band oscillations. The effectiveness of this system for monitoring wide-band oscillations is verified in simulations. Finally, this paper considers applications of WAMWS.
Keywords “double-high” power systems      renewable power generation      power electronic equipment      wide-band oscillations      wide-area measurement and early warning systems     
Issue Date: 25 April 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Ningning
XIE Xiaorong
TANG Jian
CHEN Lei
Cite this article:   
MA Ningning,XIE Xiaorong,TANG Jian, et al. Wide-area measurement and early warning system for wide-band oscillations in “double-high” power systems[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 457-464.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2021.21.014     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I5/457
  
  
  
  
  
  
[1] 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6):1843-1856. WEN Y F, YANG W F, WANG R H, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6):1843-1856. (in Chinese)
[2] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14):3699-3705. BAI J H, XIN S X, LIU J, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14):3699-3705. (in Chinese)
[3] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7):1893-1904. ZHOU X X, CHEN S Y, LU Z X, et al.Technology features of the new generation power system in China[J].Proceedings of the CSEE, 2018, 38(7):1893-1904. (in Chinese)
[4] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15):1-14.XIAO X N. Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 30(15):1-14. (in Chinese)
[5] 谢小荣, 刘华坤, 贺静波, 等. 电力系统新型振荡问题浅析[J]. 中国电机工程学报, 2018, 38(10):2821-2828. XIE X R, LIU H K, HE J B, et al. On new oscillation issues of power systems[J]. Proceedings of the CSEE, 2018, 38(10):2821-2828. (in Chinese)
[6] 姜齐荣, 王玉芝. 电力电子设备高占比电力系统电磁振荡分析与抑制综述[J]. 中国电机工程学报, 2020, 40(22):7185-7201. JIANG Q R, WANG Y Z. Overview of the analysis and mitigation methods of electromagnetic oscillations in power systems with high proportion of power electronic equipment[J]. Proceedings of the CSEE, 2020, 40(22):7185-7201. (in Chinese)
[7] 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19):5145-5154, 5395. YUAN X M, CHENG S J, HU J B. Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36(19):5145-5154, 5395. (in Chinese)
[8] 陈新, 王赟程, 龚春英. 采用阻抗分析方法的并网逆变器稳定性研究综述[J]. 中国电机工程学报, 2018, 38(7):2082-2094, 2223. CHEN X, WANG Y C, GONG C Y. Overview of stability research for grid-connected inverters based on impedance analysis method[J]. Proceedings of the CSEE, 2018, 38(7):2082-2094, 2223. (in Chinese)
[9] LIU H K, XIE X R, GAO X D, et al. Stability analysis of SSR in multiple wind farms connected to series-compensated systems using impedance network model[J]. IEEE Transactions on Power Systems, 2018, 33(3):3118-3128.
[10] 汤涌, 印永华. 电力系统多尺度仿真与试验技术[M]. 北京:中国电力出版社, 2013. TANG Y, YIN Y H. Multi-scale simulation and test technology of power systems[M]. Beijing:China Electric Power Press, 2013. (in Chinese)
[11] 周俊. 交直流电网数字物理混合仿真技术的研究[D]. 武汉:华中科技大学, 2012. ZHOU J. Study on AC/DC power system digital and physical hybrid simulation[D]. Wuhan:Huazhong University of Science and Technology, 2012. (in Chinese)
[12] 刘云, 蒋卫平, 印永华, 等. 特高压交直流大电网的数模混合实时仿真系统建模[J]. 电力系统自动化, 2008, 32(12):52-56.LIU Y, JIANG W P, YIN Y H, et al. Modeling of analogue-digital hybrid real-time simulation system applied in the UHV AC/DC great power grid[J]. Automation of Electric Power Systems, 2008, 32(12):52-56. (in Chinese)
[13] 黄丹, 陈树勇, 张一驰. 基于广域测量系统响应时间序列的电力系统暂态稳定在线判别[J]. 电网技术, 2019, 43(3):1016-1025. HUANG D, CHEN S Y, ZHANG Y C. Online assessment for transient stability based on response time series of wide-area measurement system[J]. Power System Technology, 2019, 43(3):1016-1025. (in Chinese)
[14] 刘灏, 任小伟, 田建南, 等. 基于K-ESPRIT的快速宽频测量方法[J]. 电力系统自动化, 2020, 44(10):186-192. LIU H, REN X W, TIAN J N, et al. Fast wide-frequency measurement method based on kurtosis-estimation of signal parameters via rotation invariance technique[J]. Automation of Electric Power Systems, 2020, 44(10):186-192. (in Chinese)
[15] KAWABE K, MASUDA M, NANAHARA T. Excitation control method based on wide-area measurement system for improvement of transient stability in power systems[J]. Electric Power Systems Research, 2020, 188:106568.
[16] 宋墩文, 温渤婴, 杨学涛, 等. 广域量测信息大数据特征分析及应用策略[J].电网技术, 2017, 41(1):157-163. SONG D W, WEN B Y, YANG X T, et al. Big data feature analysis and application strategy of wide area measurement information[J]. Power System Technology, 2017, 41(1):157-163. (in Chinese)
[17] ARPANAHI M K, ALHELOU H H, SIANO P. A novel multi-objective OPP for power system small signal stability assessment considering WAMS uncertainties[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5):3039-3050.
[18] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9):2-11. KANG C Q, YAO L Z. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9):2-11. (in Chinese)
[19] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7):1760-1771. TANG G F, PANG H, HE Z Y. R&D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2018, 36(7):1760-1771. (in Chinese)
[20] 祁琪, 姜齐荣, 许彦平. 智能配电网柔性互联研究现状及发展趋势[J]. 电网技术, 2020, 44(12):4664-4676.QI Q, JIANG Q R, XU Y P. Research status and development prospect of flexible interconnection for smart distribution networks[J]. Power System Technology, 2020, 44(12):4664-4676. (in Chinese)
[21] WANG L, XIE X R, JIANG Q R, et al. Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2015, 30(5):2772-2779.
[22] MAN J F, XIE X R, XU S K, et al. Frequency-coupling impedance model-based analysis of a high-frequency resonance incident in an actual MMC-HVDC system[J]. IEEE Transactions on Power Delivery, 2020, 35(6):2963-2971.
[23] 马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40(15):4720-4732. MA N N, XIE X R, HE J B, et al. Review of wide-band oscillation in renewable and power electronics highly integrated power systems[J]. Proceedings of the CSEE, 2020, 40(15):4720-4732. (in Chinese)
[24] LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6):4708-4720.
[25] 刘晓莉, 曾祥晖, 黄翊阳, 等. 联合粒子滤波和卷积神经网络的电力系统状态估计方法[J]. 电网技术, 2020, 44(9):3361-3367.LIU X L, ZENG X H, HUANG Y Y, et al. State estimation based on particle filtering and convolutional neural networks for power systems[J]. Power System Technology, 2020, 44(9):3361-3367. (in Chinese)
[26] 李中付, 华宏星, 宋汉文, 等. 用时域峰值法计算频率和阻尼[J]. 振动与冲击, 2001, 20(3):5-8.LI Z F, HUA H X, SONG H W, et al. Identification of frequencies and damping ratios with time domain peak values[J]. Journal of Vibration and Shock, 2001, 20(3):5-8. (in Chinese)
[27] 谢小荣, 王路平, 贺静波, 等. 电力系统次同步谐振/振荡的形态分析[J]. 电网技术, 2017, 41(4):1043-1049. XIE X R, WANG L P, HE J B, et al. Analysis of subsynchronous resonance/oscillation types in power systems[J]. Power System Technology, 2017, 41(4):1043-1049. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd