Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (5) : 952-958     DOI: 10.16511/j.cnki.qhdxxb.2021.21.037
COMPUTER SCIENCE AND TECHNOLOGY |
Human-machine conversation system for chatting based on scene and topic
LU Sicong, LI Chunwen
Department of Automation, Tsinghua University, Beijing 100084, China
Download: PDF(1216 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Human-machine conversation plays an important role in natural language processing and artificial intelligence. Human-machine conversation can be divided into the question answering system, task-oriented conversation, and chatting system according to the purpose of use. Among them, the chatting system usually requires higher personification. Based on the sequence transformation model of the long short-term memory network, the topic network is introduced in this study to explicitly extract the scene and topic information from the conversation, and this higher-level feature, which does not change with the word order, is inputted to the structure of the conversation model to guide the decoding and prediction processes together with the attention mechanism. Because of the difficulty of obtaining the topic information in advance, the topic network is modeled as an unsupervised learning structure. Thus, the training process needs to be divided into three steps. The experimental results show that the model can significantly improve the quality of the chatting system with appropriate training methods and structural parameters.
Keywords artificial intelligence      natural language processing      human-machine conversation      machine learning      topic network     
Issue Date: 26 April 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Sicong
LI Chunwen
Cite this article:   
LU Sicong,LI Chunwen. Human-machine conversation system for chatting based on scene and topic[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 952-958.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2021.21.037     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I5/952
  
  
  
  
  
  
  
  
[1] SHAWAR B A, ATWELL E S. Using corpora in machine-learning chatbot systems[J]. International Journal of Corpus Linguistics, 2005, 10(4):489-516.
[2] 易顺明, 胡振宇. 中文聊天机器人原型系统的设计[J]. 沙洲职业工学院学报, 2007, 10(2):5-9. YI S M, HU Z Y. The prototype design for the Chinese chat robots[J]. Journal of Shazhou Professional Institute of Technology, 2007, 10(2):5-9. (in Chinese)
[3] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[EB/OL]. (2014-12-14)[2021-05-01]. https://arxiv.org/abs/1409.3215v3.
[4] SUNDERMEYER M, NEY H, SCHLVTER R. From feedforward to recurrent LSTM neural networks for language modeling[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(3):517-529.
[5] LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation[EB/OL]. (2015-09-20)[2021-05-01]. https://arxiv.org/abs/1508.04025v5.
[6] 王红, 史金钏, 张志伟. 基于注意力机制的LSTM的语义关系抽取[J]. 计算机应用研究, 2018, 35(5):1417-1420, 1440. WANG H, SHI J C, ZHANG Z W. Text semantic relation extraction of LSTM based on attention mechanism[J]. Application Research of Computers, 2018, 35(5):1417-1420, 1440. (in Chinese)
[7] NIO L, SAKTI S, NEUBIG G, et al. Conversation dialog corpora from television and movie scripts[C]//2014 17th Oriental Chapter of the International Committee for the Co-ordination and Standardization of Speech Databases and Assessment Techniques (COCOSDA). Phuket, Thailand:IEEE Press, 2014:1-4.
[8] 曾小芹. 基于Python的中文结巴分词技术实现[J]. 信息与电脑(理论版), 2019, 31(18):38-39, 42. ZENG X Q. Technology implementation of Chinese jieba segmentation based on python[J]. China Computer & Communication, 2019, 31(18):38-39, 42. (in Chinese)
[9] RONG X. Word2vec parameter learning explained[EB/OL]. (2016-06-05)[2021-05-01]. https://arxiv.org/abs/1411.2738v4.
[10] 张伟男, 张杨子, 刘挺. 对话系统评价方法综述[J]. 中国科学:信息科学, 2017, 47(8):953-966. ZHANG W N, ZHANG Y Z, LIU T. Survey of evaluation methods for dialogue systems[J]. Scientia Sinica (Informationis), 2017, 47(8):953-966. (in Chinese)
[11] MOLDOVAN D I, TATU M. Natural language question answering system and method utilizing multi-modal logic:US20060053000 A1[P]. 2006-03-09.
[12] 邢超. 智能问答系统的设计与实现[D]. 北京:北京交通大学, 2015. XING C. The design and implementation of intelligent question and answering system[D]. Beijing:Beijing Jiaotong University, 2015. (in Chinese)
[13] WEN T H, VANDYKE D, MRKSIC N, et al. A network-based end-to-end trainable task-oriented dialogue system[EB/OL]. (2017-04-24)[2021-05-01]. https://arxiv.org/abs/1604.04562v3.
[14] 张杰晖. 任务型对话系统的自然语言生成研究[D]. 广州:华南理工大学, 2019. ZHANG J H. Research on natural language generation in task-based dialogue system[D]. Guangzhou:South China University of Technology, 2019. (in Chinese)
[15] MĚKOTA O, GÖKIRMAK M, LAITOCH P. End to end dialogue transformer[EB/OL]. (2020-08-24)[2021-05-01]. https://www.researchgate.net/publication/343849046_End _to_End_Dialogue_Transformer.
[16] THIERGART J, HUBER S, VBELLACKER T. Under-standing emails and drafting responses-An approach using GPT-3[EB/OL]. (2021-02-15)[2021-05-01]. https://arxiv.org/abs/2102.03062v3.
[17] 张献涛, 张猛, 暴筱, 等. 一种提升人机交互对话语料质量与多样性的对话语料库生成方法:CN111026884A[P]. 2020-04-17. ZHANG X T, ZHANG M, BAO X, et al. Dialogue corpus generation method for improving quality and diversity of man-machine interaction dialogue corpora:CN111026884A[P]. 2020-04-17. (in Chinese)
[18] WIKIPEDIA. Long short-term memory[EB/OL]. (2021-03-25)[2021-05-01]. https://en.wikipedia.org/wiki/Long_short-term_memory.
[19] WIKIPEDIA. Attention (machine learning)[EB/OL]. (2021-02-27)[2021-05-01]. https://en.wikipedia.org/wiki/Attention_(machine_learning).
[20] WIKIPEDIA. BLEU[EB/OL]. (2020-11-09)[2021-05-01]. https://en.wikipedia.org/wiki/BLEU.
[21] WIKIPEDIA. Autoencoder[EB/OL]. (2021-03-24)[2021-05-01]. https://en.wikipedia.org/wiki/Autoencoder.
[22] DANESCU-NICULESCU-MIZIL C, LEE L. Chameleons in imagined conversations:A new approach to understanding coordination of linguistic style in dialogs[C]//CMCL 2011:Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics. Portland, Oregon, USA:Association for Computational Linguistics, 2011:76-87.
[23] GITHUB. Fxsjy/jieba[DB/OL]. (2020-01-20)[2021-05-01]. https://github.com/fxsjy/jieba.
[24] WIKIPEDIA. Beam search[EB/OL]. (2021-03-11)[2021-05-01]. https://en.wikipedia.org/wiki/Beam_search.
[1] WANG Yun, HU Min, TA Na, SUN Haitao, GUO Yifeng, ZHOU Wuai, GUO Yu, ZHANG Wanzhe, FENG Jianhua. Large language models and their application in government affairs[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 649-658.
[2] WANG Qingren, WANG Yinzi, ZHONG Hong, ZHANG Yiwen. Chinese-oriented entity recognition method of character vocabulary combination sequence[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1326-1338.
[3] WU Hao, NIU Fenglei. Machine learning model of radiation heat transfer in the high-temperature nuclear pebble bed[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1213-1218.
[4] DAI Xin, HUANG Hong, JI Xinyu, WANG Wei. Spatiotemporal rapid prediction model of urban rainstorm waterlogging based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 865-873.
[5] REN Jianqiang, CUI Yapeng, NI Shunjiang. Prediction method of the pandemic trend of COVID-19 based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 1003-1011.
[6] AN Jian, CHEN Yuxuan, SU Xingyu, ZHOU Hua, REN Zhuyin. Applications and prospects of machine learning in turbulent combustion and engines[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 462-472.
[7] ZHAO Qiming, BI Kexin, QIU Tong. Comparison and integration of machine learning based ethylene cracking process models[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1450-1457.
[8] LI Qingbin, MA Rui, HU Yu, HUANGFU Zehua, SHEN Yiyuan, ZHOU Shaowu, MA Jingang, AN Zaizhan, GUO Guangwen. A review of intelligent dam construction techniques[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1252-1269.
[9] LIU Tianyun. 3D printing of large filled construction projects[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1281-1291.
[10] CAO Laicheng, LI Yuntao, WU Rong, GUO Xian, FENG Tao. Multi-key privacy protection decision tree evaluation scheme[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 862-870.
[11] WANG Haojie, MA Zixuan, ZHENG Liyan, WANG Yuanwei, WANG Fei, ZHAI Jidong. Efficient memory allocator for the New Generation Sunway supercomputer[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 943-951.
[12] LI Ruimin, WANG Changjun. Development of advanced traffic management systems[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 509-515.
[13] LI Wei, LI Chenglong, YANG Jiahai. As-Stream: An intelligent operator parallelization strategy for fluctuating data streams[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1851-1863.
[14] LIU Qiangmo, HE Xu, ZHOU Baishun, WU Haolin, ZHANG Chi, QIN Yu, SHEN Xiaomei, GAO Xiaorong. Simple and high performance classification model for autism based on machine learning and pupillary response[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1730-1738.
[15] MA Xiaoyue, MENG Xiao. Image position and layout effects of multi-image tweets from the perspective of user engagement[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 77-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd