Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (10) : 1177-1185     DOI: 10.16511/j.cnki.qhdxxb.2021.22.017
COMPUTER SCIENCE AND TECHNOLOGY |
IPv6 active address discovery algorithm based on multi-level classification and space modeling
LI Guo1, HE Lin1, SONG Guanglei1, WANG Zhiliang1,2, YANG Jiahai1,2,3, LIN Jinlei1, GAO Hao1
1. Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China;
2. Beijing National Research Center for Information Science and Technology, Beijing 100084, China;
3. Peng Cheng Laboratory, Shenzhen 518000, China
Download: PDF(3593 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The enormous IPv6 address space makes it impossible to apply traditional IPv4 brute-force scanning for IPv6 active address discovery. This paper presents an IPv6 address discovery algorithm based on multi-level classification and space modeling. The multi-level classification algorithm uses multi-dimensional information for fine-grained division of the seed addresses. The space modeling uses four representation strategies to model any address set with pattern representation used to balance the low detection efficiency caused by the large modeling space and the sample error caused by the small modeling space. New active IPv6 addresses can be discovered by heuristic traversal of the pattern representation. Tests show that this address discovery algorithm has a higher hit rate than previous methods and verifies that the fine-grained division of the seed address improves the hit rate of the address discovery algorithm.
Keywords IPv6      network measurements      scanning      address discovery      address classification     
Issue Date: 26 August 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Guo
HE Lin
SONG Guanglei
WANG Zhiliang
YANG Jiahai
LIN Jinlei
GAO Hao
Cite this article:   
LI Guo,HE Lin,SONG Guanglei, et al. IPv6 active address discovery algorithm based on multi-level classification and space modeling[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1177-1185.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2021.22.017     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I10/1177
  
  
  
  
  
  
  
  
  
  
  
  
[1] DURUMERIC Z, WUSTROW E, HALDERMAN J A. ZMap:Fast Internet-wide scanning and its security applications[C]//Proceedings of the 22nd USENIX Conference on Security (SEC'13). Washington DC, USA, 2013:605-620.
[2] ULLRICH J, KIESEBERG P, KROMBHOLZ K, et al. On reconnaissance with IPv6:A pattern-based scanning approach[C]//10th International Conference on Availability, Reliability and Security (ARES). Toulouse, France, 2015:186-192.
[3] FOREMSKI P, PLONKA D, BERGER A. Entropy/IP:Uncovering structure in IPv6 addresses[C]//Proceedings of the 2016 Internet Measurement Conference. Santa Monica, USA, 2016:167-181.
[4] MURDOCK A, LI F, BRAMSEN P, et al. Target generation for Internet-wide IPv6 scanning[C]//Proceedings of the 2017 Internet Measurement Conference. London, UK, 2017:242-253.
[5] GASSER O, SCHEITLE Q, FOREMSKI P, et al. Clusters in the expanse:Understanding and unbiasing IPv6 hitlists[C]//Internet Measurement Conference (IMC). Boston, USA, 2018:364-378.
[6] LIU Z Z, XIONG Y Q, LIU X, et al. 6Tree:Efficient dynamic discovery of active addresses in the IPv6 address space[J]. Computer Networks, 2019, 155:31-46.
[7] SONG G L, HE L, WANG Z L, et al. Towards the construction of global IPv6 hitlist and efficient probing of IPv6 address space[C]//International Symposium on Quality of Service (IWQoS). Hangzhou, China, 2020:1-10.
[8] NMAP. Top 20 and 200 most scanned ports in the cybersecurity industry[Z/OL].[2021-01-15]. https://nmap.org/book/port-scanning.html#most-popular-ports.
[9] PLONKA D, BERGER A. Temporal and spatial classification of active IPv6 addresses[C]//Internet Measurement Conference (IMC). Tokyo, Japan, 2015:509-522.
[10] RICHTER P, SMARAGDAKIS G, PLONKA D, et al. Beyond counting:New perspectives on the active IPv4 address space[C]//Internet Measurement Conference (IMC). Santa Monica, USA, 2016:135-149.
[11] MCINNES L, HEALY J, ASTELS S. hdbscan:Hierarchical density based clustering[J]. The Journal of Open Source Software, 2017, 2(11):205.
[12] GASSER O, SCHEITLE Q, GEBHARD S, et al. Scanning the IPv6 Internet:Towards a comprehensive hitlist[C]//Proceeding of the 8th International Workshop on Traffic Monitoring and Analysis (TMA). Louvain-la-Neuve, Belgium, 2016:1-8.
[13] NMAP. Nmap:The network mapper[Z/OL].[2021-01-15]. https://nmap.org.
[14] PYASN. PYASN[Z/OL].[2020-12-24]. https://github.com/hadiasghari/pyasn.
[1] XIE Weiqiang, ZHANG Xiaoping, LIU Xiaoli, ZHOU Xiaoxiong, LIU Quansheng. Three-dimensional morphological characterization of sand particles based on a multiangle projection method[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 294-302.
[2] WANG Zhexin, LIU Hui, CHENG Li, GAO Lilei, LV Zhenlei, JIANG Nianming, HE Zuoxiang, LIU Yaqiang. Design of dedicated collimator for whole-body bone scanning on single photon emission computed tomography based on Monte Carlo simulation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 811-817.
[3] ZHANG Jiaqing, GUO Yi, FENG Rui, LI Kaiyuan, HUANG Yubiao, SHANG Fengju. Solid-gas products and reaction mechanism of pyrolysis of the sheath material of a typical flame-retardant low-voltage cable in substations during a fire[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 33-42.
[4] HUANG Biyue, CHEN Yahao, SUN Haishun, MAO Yujie, HAN Yingsheng, WANG Dongze. Sub-synchronous oscillation in wind farm integrated power system considering static var compensator[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 446-456.
[5] FENG Qianqian, WANG Wenjuan, LI Haidong, PAN Xun. Autofluorescence of chloroplasts measured by a laser scanning confocal microscope[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(6): 651-654,660.
[6] Yi DU,Xiangang WANG,Xincheng XIANG. An exponential-type weighting function for CT reconstruction with a displaced detector array[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 115-121.
[7] Kun YU,Congxiao BAO,Xing LI. Internet path performance measurements using web servers[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(4): 474-479.
[8] Yuan LIN, Shu LIANG, Shengjin WANG. 3-D faces registration via non-rigid ICP[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 334-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd