Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (1) : 133-140     DOI: 10.16511/j.cnki.qhdxxb.2021.22.020
AUTOMOTIVE ENGINEERING |
Slid parameter estimates for tracked vehicles with trajectory prediction compensation
LI Rui1,2, LI Chunming2, SU Jie2, CHEN Liang3, QIN Zhaobo3, BIAN Yougang4
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. China North Vehicle Research Institute, Beijing 100072, China;
3. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;
4. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Download: PDF(5525 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Accurate motion models for tracked vehicles are difficult to build due to the complex interactions between the tracks and the terrain. A dual-layer unscented Kalman filter (DUKF) is developed to estimate the slip parameters in real time for tracked vehicles. An upper-layer unscented Kalman filter (UKF) is used first to estimate the slip parameters based on the historical trajectory information, which are then imported into the vehicle model based on the instantaneous centers of rotation (ICRs) to predict the forward trajectory. A lower-layer UKF is then used to correct the preliminarily estimated slip parameters based on the residual position of the trajectory prediction. The effectiveness of the DUKF is verified by simulations on RecurDyn and MATLAB/Simulink. The simulations show that the DUKF improves the accuracy of the slip parameter estimation and reduces the trajectory prediction errors with curvatures compared with predictions using the UKF and the extended Kalman filter (EKF).
Keywords tracked vehicle      slip parameter      unscented Kalman filter (UKF)      trajectory prediction      instantaneous center of rotation (ICR)     
Issue Date: 14 January 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Rui
LI Chunming
SU Jie
CHEN Liang
QIN Zhaobo
BIAN Yougang
Cite this article:   
LI Rui,LI Chunming,SU Jie, et al. Slid parameter estimates for tracked vehicles with trajectory prediction compensation[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 133-140.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2021.22.020     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I1/133
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] SEBASTIAN B, BEN-TZVI P. Physics based path planning for autonomous tracked vehicle in challenging terrain[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2):511-526.
[2] NAUMOV V N, MASHKOV K Y, BYAKOV K E. Autonomous tracked vehicles effectiveness estimation[C]//IOP Conference Series:Materials Science and Engineering. Moscow, Russia, 2019, 534(1):012006.
[3] JIAO J, WANG W Z, HE Y T, et al. Adaptive fuzzy sliding mode-based steering control of agricultural tracked robot[C]//Fuzzy Systems and Data Mining 2019. Kitakyushu, Japan, 2019:243-254.
[4] 秦兆博, 罗禹贡, 解来卿, 等. 基于行星传动的双模混合动力履带车辆传动系统结构设计[J]. 清华大学学报(自然科学版), 2018, 58(1):27-34. QIN Z B, LUO Y G, XIE L Q, et al. Dual-mode hybrid track-type vehicle powertrain design using planetary gear sets[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(1):27-34. (in Chinese)
[5] 秦兆博, 罗禹贡, 张东好, 等. 液压混合动力履带推土机行星齿轮传动系统的设计[J]. 清华大学学报(自然科学版), 2017, 57(5):497-503. QIN Z B, LUO Y G, ZHANG D H, et al. Powertrain design of hydraulic hybrid track-type bull dozers based on planetary gear sets[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(5):497-503. (in Chinese)
[6] FERNANDEZ B, HERRERA P J, CERRADA J A. A simplified optimal path following controller for an agricultural skid-steering robot[J]. IEEE Access, 2019, 7:95932-95940.
[7] GRUNING V, PENTZER J, BRENNAN S, et al. Energy-aware path planning for skid-steer robots operating on hilly terrain[C]//2020 American Control Conference (ACC). Denver, USA, 2020:2094-2099.
[8] ZHAO Z Y, LIU H O, CHEN H Y, et al. Kinematics-aware model predictive control for autonomous high-speed tracked vehicles under the off-road conditions[J]. Mechanical Systems and Signal Processing, 2019, 123:333-350.
[9] WANG C F, LV W J, LI X C, et al. Terrain adaptive estimation of instantaneous centres of rotation for tracked robots[J]. Complexity, 2018, 2018:4816712.
[10] WARD C C, IAGNEMMA K. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain[J]. IEEE Transactions on Robotics, 2008, 24(4):821-831.
[11] RAY L R, BRANDE D C, LEVER J H. Estimation of net traction for differential-steered wheeled robots[J]. Journal of Terramechanics, 2009, 46(3):75-87.
[12] DAR T M, LONGORIA R G. Slip estimation for small-scale robotic tracked vehicles[C]//Proceedings of the 2010 American Control Conference. Baltimore, USA, 2010:6816-6821.
[13] 周波, 戴先中, 韩建达. 野外移动机器人滑动效应的在线建模和跟踪控制[J]. 机器人, 2011, 33(3):265-272. ZHOU B, DAI X Z, HAN J D. Online modelling and tracking control of mobile robots with slippage in outdoor environments[J]. Robot, 2011, 33(3):265-272. (in Chinese)
[14] SONG X, SENEVIRATNE L D, ALTHOEFER K. Slip parameter estimation for tele-operated ground vehicles in slippery terrain[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2011, 225(6):814-830.
[15] BURKE M. Path-following control of a velocity constrained tracked vehicle incorporating adaptive slip estimation[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul, USA, 2012:97-102.
[16] 焦俊, 孔文, 辜丽川, 等. 基于UKF和SMO农用履带机器人滑动参数计算[J]. 系统仿真学报, 2015, 27(7):1577-1583. JIAO J, KONG W, GU L C, et al. Sliding parameters calculation of agricultural tracked robot based on UKF and SMO[J]. Journal of System Simulation, 2015, 27(7):1577-1583. (in Chinese)
[17] MARTINEZ J L, MANDOW A, MORALES J, et al. Approximating kinematics for tracked mobile robots[J]. The International Journal of Robotics Research, 2005, 24(10):867-878.
[18] PENTZER J, BRENNAN S, REICHARD K. Model-based prediction of skid-steer robot kinematics using online estimation of track instantaneous centers of rotation[J]. Journal of Field Robotics, 2014, 31(3):455-476.
[19] 熊光明, 鲁浩, 郭孔辉, 等. 基于滑动参数实时估计的履带车辆运行轨迹预测方法研究[J]. 兵工学报, 2017, 38(3):600-607. XIONG G M, LU H, GUO K H, et al. Research on trajectory prediction of tracked vehicles based on real time slip estimation[J]. Acta Armamentarii, 2017, 38(3):600-607. (in Chinese)
[20] 赵梓烨, 刘海鸥, 陈慧岩. 分布式电驱动无人高速履带车辆越野环境轨迹预测方法研究[J]. 兵工学报, 2019, 40(4):680-688. ZHAO Z Y, LIU H O, CHEN H Y. Research on trajectory prediction method of distributed high speed electric drive unmanned tracked vehicle in off-road conditions[J]. Acta Armamentarii, 2019, 40(4):680-688. (in Chinese)
[21] WONG J Y. Theory of ground vehicles[M]. 4th ed. Hoboken, USA:John Wiley & Sons, 2008.
[1] ZOU Xiang, CHENG Peng, CHENG Nong. Fast entire-flight-phase trajectory predictions[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 685-691.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd