Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (2) : 331-338     DOI: 10.16511/j.cnki.qhdxxb.2021.22.024
CIVIL ENGINEERING |
Reinterpretation of a thermal environment evaluation index “standard effective temperature (SET)”
JI Wenjie1,2, DU Heng3, ZHU Yingxin2, CAO Bin2, LIAN Zhiwei3, LIU Shuli1, YANG Changzhi4
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. School of Architecture, Tsinghua University, Beijing 100084, China;
3. School of Design, Shanghai Jiao Tong University, Shanghai 200240, China;
4. School of Civil Engineering, Hunan University, Changsha 410082, China
Download: PDF(1825 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The standard effective temperature (SET) is an evaluation index based on the two-node thermal physiological model which has been widely used to evaluate thermal comfort. However, the SET is often misused due to misunderstanding the SET equivalent standard environment and differences in some key parameters. This study summarizes the development of the SET index and then reinterprets this index based on Gagge's definition in the 1986 version to correct the misunderstanding of the standard SET environment. In addition, the equivalent standard environment parameters vary with the metabolic rate. The SET calculational method is revised here to correct these problems with guidelines for future applications of the SET index.
Keywords building thermal engineering theory      thermal comfort      standard effective temperature (SET)      two-node model      thermal environment evaluation     
Issue Date: 22 January 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JI Wenjie
DU Heng
ZHU Yingxin
CAO Bin
LIAN Zhiwei
LIU Shuli
YANG Changzhi
Cite this article:   
JI Wenjie,DU Heng,ZHU Yingxin, et al. Reinterpretation of a thermal environment evaluation index “standard effective temperature (SET)”[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 331-338.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2021.22.024     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I2/331
  
  
  
  
  
  
[1] GAGGE A P, NISHI Y, GONZALEZ R R. Standard effective temperature:A single temperature index of temperature sensation and thermal discomfort[C]//Proceedings of CIB Commission W45(Human Requirements), Symposium at the Building Research Station. London, UK, 1972:229-250.
[2] GAGGE A P, STOLWIJK J A J, NISHI Y. An effective temperature scale based on a simple model of human physiological regulatory response[J]. ASHRAE Transactions, 1971, 77(1):247-262.
[3] GONZALEZ R R, NISHI Y, GAGGE A P. Experimental evaluation of standard effective temperature a new biometeorological index of man's thermal discomfort[J]. International Journal of Biometeorology, 1974, 18(1):1-15.
[4] GAGGE A P. Rational temperature indices of man's thermal environment and their use with a 2-node model of his temperature regulation[J]. Federation Proceedings, 1973, 32(5):1572-1582.
[5] NISHI Y, GAGGE A P. Effective temperature scale useful for hypo-and hyperbaric environments[J]. Aviation Space and Environmental Medicine, 1977, 48(2):97-107.
[6] GAGGE A P. Chapter 5 rational temperature indices of thermal comfort[J]. Studies in Environmental Science, 1981, 10:79-98.
[7] GAGGE A P, FOBELETS A P, BERGLUND L G. A standard predictive index of human response to the thermal environment[J]. ASHRAE Transactions, 1986, 92(2B):709-731.
[8] FANGER P O. Thermal comfort:Analysis and applications in environmental engineering[M]. Copenhagen, Denmark:Danish Technology Press, 1970.
[9] ANSI, ASHRAE. ASHRAE standard:Thermal environmental conditions for human occupancy:ANSI/ASHRAE55-2017[S]. Atlanta, USA:ASHRAE, 2017.
[10] TAKADA S, SAKIYAMA T, MATSUSHITA T. Validity of the two-node model for predicting steady-state skin temperature[J]. Building and Environment, 2011, 46(3):597-604.
[11] MOCHIDA T, SAKOI T. PMV:Its originality and characteristics[J]. Journal of the Human-Environment System, 2003, 6(2):61-67.
[12] MOCHIDA T. Fundamental study regarding the characteristics of wettedness under constant average skin temperature[J]. The Annals of Physiological Anthropology, 1993, 12(2):59-69.
[13] WANG M N. Study on two-node human thermal regulation model in low atmospheric pressure environment[D]. Qingdao:Qingdao University of Technology, 2013. (in Chinese)王美楠. 低气压环境下二节点人体热调节模型研究[D]. 青岛:青岛理工大学, 2013.
[14] WANG H Y, WANG M N, HU S T, et al. Calculation of standard effective temperature and comfortable zone in low pressure environment[J]. Heating Ventilating & Air Conditioning, 2014, 44(10):22-25. (in Chinese)王海英, 王美楠, 胡松涛, 等. 低气压环境下标准有效温度与舒适区的计算[J]. 暖通空调, 2014, 44(10):22-25.
[15] FAN J P. A new numerical simulation model for standard effective temperature[D]. San Diego, USA:University of California, 2015.
[16] MAZON J. The influence of thermal discomfort on the attention index of teenagers:An experimental evaluation[J]. International Journal of Biometeorology, 2014, 58(5):717-724.
[17] AYNSLEY R. Quantifying the cooling sensation of air movement[J]. International Journal of Ventilation, 2008, 7(1):67-76.
[18] YE G D, YANG C Z, CHEN Y M, et al. A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET*)[J]. Building and Environment, 2003, 38(1):33-44.
[19] ZHANG S, LIN Z. Predicted mean vote with skin temperature from standard effective temperature model[J]. Building and Environment, 2020, 183:107133.
[20] ASHRAE. ASHRAE handbook of fundamentals. Physiological principles. Comfort and health[R]. Atlanta, USA:ASHRAE, 2017.
[21] GAGGE A P, NISHI Y, NEVINS R G. The role of clothing in meeting FEA energy conservation guidelines[J]. ASHRAE Transactions, 1976, 82(1):234-247.
[22] DU H, YANG C Z. Re-visitation of the thermal environment evaluation index standard effective temperature (SET*) based on the two-node model[J]. Sustainable Cities and Society, 2020, 53:101899.
[23] DE DEAR R, BRAGER G S, COOPER D. Developing an adaptive model of thermal comfort and preference[J]. ASHRAE Transactions, 1998, 104(1):1141-1152.
[24] MCINTYRE D A. Indoor climate[M]. London, UK:Applied Science Publishers, 1980.
[25] GAO J, WANG Y, WARGOCKI P. Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated buildings[J]. Building and Environment, 2015, 92:200-208.
[26] JI W J, ZHU Y X, CAO B. Development of the predicted thermal sensation (PTS) model using the ASHRAE global thermal comfort database[J]. Energy and Buildings, 2020, 211:109780.
[27] VAN MARKEN LICHTENBELT W D, KINGMA B, VAN DER LANS A, et al. Cold exposure:An approach to increasing energy expenditure in humans[J]. Trends in Endocrinology and Metabolism, 2014, 25(4):165-167.
[1] LIU Yiming, XU Peiqi, LIU Nianxiong. Thermal design and optimization of south-oriented combined external window for a typical office building in frigid plateau region[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1878-1886.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd