Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2021, Vol. 61 Issue (8) : 833-841     DOI: 10.16511/j.cnki.qhdxxb.2021.26.019
Numerical Simulation |
A fully coupled and full 3D finite element model for hydraulic fracturing and its verification with physical experiments
BAO Jinqing1, YANG Chenxu1, XU Jianguo2, LIU Hongxia2, WANG Gaocheng3, ZHANG Guangming4, CHENG Wei4, ZHOU Desheng1
1. School of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China;
2. PetroChina Jilin Oilfield Company, Songyuan 138001, China;
3. PetroChina Zhejiang Oilfield Company, Hangzhou 310023, China;
4. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
Download: PDF(7253 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Two sets of equation are proposed to describe the key mechanic issues in hydraulic fracturing including rock deformation, fracture propagation, fluid flow and leak-off in fractures, where the finite element method is taken as the numerical foundation. The fully coupled and full 3-D numerical model for hydraulic fracturing is set up via solving the coupled two sets of equation simultaneously. Comparisons of the numerical simulations from the model with two classical physical experiments are made, and they have excellent agreements on net pressure, fracture widths, fracture lengths, fracture propagation modes, et al. The numerical model is verified by the experiments, and shows that the cubic law in the hydraulic fracturing theory is still applicable even when the fracture widths are at the order of microns.
Keywords hydraulic fracturing      full 3-D model      finite element method      experimental verification     
Issue Date: 14 July 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAO Jinqing
YANG Chenxu
XU Jianguo
LIU Hongxia
WANG Gaocheng
ZHANG Guangming
CHENG Wei
ZHOU Desheng
Cite this article:   
BAO Jinqing,YANG Chenxu,XU Jianguo, et al. A fully coupled and full 3D finite element model for hydraulic fracturing and its verification with physical experiments[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 833-841.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2021.26.019     OR     http://jst.tsinghuajournals.com/EN/Y2021/V61/I8/833
  
  
  
  
  
  
  
[1] 姚军, 孙致学, 张凯, 等. 非常规油气藏开采中的工程科学问题及其发展趋势[J]. 石油科学通报, 2016, 1(1):128-142. YAO J, SUN Z X, ZHANG K, et al. Scientific engineering problems and development trends in unconventional oil and gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(1):128-142. (in Chinese)
[2] ADACHI J, SIEBRITS E, PEIRCE A, et al. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5):739-757.
[3] 庄茁, 柳占立, 王涛, 等. 页岩水力压裂的关键力学问题[J]. 科学通报, 2016, 61(1):72-81. ZHANG Z, LIU Z L, WANG T, et al. The key mechanical problems on hydraulic fracture in shale[J]. Chinese Science Bulletin, 2016, 61(1):72-81. (in Chinese)
[4] KHRISTIANOVIC S A, ZHELTOV Y P. Formation of vertical fractures by means of highly viscous liquid[C]//Proceedings of the Forth World Petroleum Congress. Rome, Italy:WPC, 1955:579-586.
[5] GEERTSMA J, DE KLERK F. A rapid method of predicting width and extent of hydraulically induced fractures[J]. Journal of Petroleum Technology, 1969, 21(12):1571-1581.
[6] PERKINS T K, KERN L R. Widths of hydraulic fractures[J]. Journal of Petroleum Technology, 1961, 14(9):937-949.
[7] NORDGREN R P. Propagation of a vertical hydraulic fracture[J]. Society of Petroleum Engineer Journal, 1970, 12(4):306-314.
[8] SIMONSON E R, ABOU-SAYED A S, CLIFTON R J. Containment of massive hydraulic fractures[J]. Society of Petroleum Engineers Journal, 1978, 18(1):27-32.
[9] SPENCE D A, SHARP P. Self-similar solutions for elastohydrodynamic cavity flow[J]. Proceedings of the Royal Society of London, 1985, 400(1819):289-313.
[10] BUNGER A P, DETOURNAY E, GARAGASH D I. Toughness-dominated hydraulic fracture with leak-off[J]. International Journal of Fracture, 2005, 134(2):175-190.
[11] SHEL E V, PADERIN G V. Analytical solution of the pseudo-3D model for hydraulic fracturing in a storage-dominated regime[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114:92-100.
[12] PECHER R. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells[D]. Calgary:University of Calgary, 1999.
[13] ZHOU D S, ZHENG P, PENG J, et al. Induced stress and interaction of fractures during hydraulic fracturing in shale formation[J]. Journal of Energy Resources Technology, 2015, 137(6):062902.
[14] ZHOU D S, ZHENG P, HE P, et al. Hydraulic fracture propagation direction during volume fracturing in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2016, 141:82-89.
[15] SKOPINTSEV A M, DONTSOV E V, KOVTUNENKO P V, et al. The coupling of an enhanced pseudo-3D model for hydraulic fracturing with a proppant transport model[J]. Engineering Fracture Mechanics, 2020, 236:107177.
[16] DONTSOV E V, PEIRCE A P. An enhanced pseudo-3D model for hydraulic fracturing accounting for viscous height growth, non-local elasticity, and lateral toughness[J]. Engineering Fracture Mechanics, 2015, 142:116-139.
[17] DONTSOV E V, PEIRCE A P. Comparison of toughness propagation criteria for blade-like and pseudo-3D hydraulic fractures[J]. Engineering Fracture Mechanics, 2016, 160:238-247.
[18] CHEN M, ZHANG S C, LI S H, et al. An explicit algorithm for modeling planar 3D hydraulic fracture growth based on a super-time-stepping method[J]. International Journal of Solids and Structures, 2020, 191-192:370-389.
[19] ADACHI J I, DETOURNAY E, PEIRCE A P. Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4):625-639.
[20] 侯冰, 陈勉, 张保卫, 等. 裂缝性页岩储层多级水力裂缝扩展规律研究[J]. 岩土工程学报, 2015, 37(6):1041-1046. HOU B, CHEN M, ZHANG B W, et al. Propagation of multiple hydraulic fractures in fractured shale reservoir[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6):1041-1046. (in Chinese)
[21] CHEN Z R. Finite element modelling of viscosity-dominated hydraulic fractures[J]. Journal of Petroleum Science and Engineering, 2012, 88-89:136-144.
[22] SALIMZADEH S, KHALILI N. A three-phase XFEM model for hydraulic fracturing with cohesive crack propagation[J]. Computers and Geotechnics, 2015, 69:82-92.
[23] 薛炳, 张广明, 吴恒安, 等. 油井水力压裂的三维数值模拟[J]. 中国科学技术大学学报, 2008, 38(11):1322-1325, 1347. XUE B, ZHANG G M, WU H A, et al. Three-dimensional numerical simulation of hydraulic fracture in oil wells[J]. Journal of University of Science and Technology of China, 2008, 38(11):1322-1325, 1347. (in Chinese)
[24] 潘林华, 张士诚, 张劲, 等. 基于流-固耦合的压裂裂缝形态影响因素分析[J]. 西安石油大学学报(自然科学版), 2012, 27(3):76-80. PAN L H, ZHANG S C, ZHANG J, et al. Analysis of factors influencing the shape of hydraulic fracturing fracture based on fluid-solid coupling[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2012, 27(3):76-80. (in Chinese)
[25] 王涛, 高越, 柳占立, 等. 基于扩展有限元法的水力压裂大物模实验的数值模拟[J]. 清华大学学报(自然科学版), 2014, 54(10):1304-1309. WANG T, GAO Y, LIU Z L, et al. Numerical simulations of hydraulic fracturing in large objects using an extended finite element method[J]. Journal of Tsinghua University (Science & Technology), 2014, 54(10):1304-1309. (in Chinese)
[26] 曾青冬, 姚军. 水平井多裂缝同步扩展数值模拟[J]. 石油学报, 2015, 36(12):1571-1579. ZENG Q D, YAO J. Numerical simulation of multiple fractures simultaneous propagation in horizontal wells[J]. Acta Petrolei Sinica, 2015, 36(12):1571-1579. (in Chinese)
[27] GUPTA P, DUARTE C A. Coupled formulation and algorithms for the simulation of non-planar three-dimensional hydraulic fractures using the generalized finite element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(10):1402-1437.
[28] LECAMPION B, DESROCHES J. Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore[J]. Journal of the Mechanics and Physics of Solids, 2015, 82:235-258.
[29] DE PATER C J, WEIJERS L, SAVIC M, et al. Experimental study of nonlinear effects in hydraulic fracture propagation[J]. SPE Production & Operations, 1994, 9(4):239-246.
[30] SETTGAST R R, FU P C, WALSH S D C, et al. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(5):627-653.
[31] RUBIN M B. Experimental study of hydraulic fracturing in an impermeable material[J]. Journal of Energy Resources Technology, 1983, 105(2):116-124.
[32] BATCHELOR G K. An introduction to fluid dynamics[M]. Cambridge:Cambridge University Press, 1967.
[33] CARTER R D. Optimum fluid characteristics for fracture extension[M]. Tulsa:American Petroleum Institute, 1957.
[34] BAO J Q, FATHI E, AMERI S. A coupled finite element method for the numerical simulation of hydraulic fracturing with a condensation technique[J]. Engineering Fracture Mechanics, 2014, 131:269-281.
[35] BAO J Q, FATHI E, AMERI S. Uniform investigation of hydraulic fracturing propagation regimes in the plane strain model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(5):507-523.
[36] LECAMPION B, DESROCHES J, JEFFREY R G, et al. Experiments versus theory for the initiation and propagation of radial hydraulic fractures in low-permeability materials[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(2):1239-1263.
[1] XU Wei, ZHAO Zhengming, JIANG Qirong. Calculation method for parasitic capacitance of high-frequency transformers[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1088-1096.
[2] CHAI Shiyang, LIU Qilei, LIANG Xinyuan, ZHANG Song, GUO Yansuo, XU Chengqiu, ZHANG Lei, DU Jian, YUAN Zhihong. Computer-aided design method of crystallization solvents for the recovery of high-purity MBT[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 701-706.
[3] NIE Junfeng, TANG Zhenrui, ZHANG Haiquan, LI Hongke, WANG Xin. Crystal plasticity constitutive model for BCC based on the dislocation density[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 780-784.
[4] TIAN Cheng, ZHOU Chi, DING Weiqi, GUI Liangjin, FAN Zijie. Influence of the thermal expansion of a shaft on the misalignment of bevel gears[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 565-571.
[5] WU Jian'an, WU Zuhe, WANG Heng, LI Liya, TANG Jintian. Optimization of a coil design for magnetic hyperthermia treatment based on the finite element method[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 406-410,416.
[6] GUAN Liwen, YANG Liangliang, WANG Liping, CHEN Xueshang, WANG Yaohui, HUANG Ke. Modeling and analysis of intermittent cutting temperature field for the “S” test specimens[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 192-199.
[7] LI Pengfei, AN Xuehui, HE Shiqin, CHEN Chen. Mathematical model for dowel bearing capacity considering the effect of concrete damage[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(12): 1255-1263.
[8] LI Yanjun, WU Aiping, LIU Debo, ZHAO Haiyan, ZHAO Yue, WANG Guoqing. Numerical simulations of welding residual stresses in VPTIG-welded joints of the 2219 aluminum alloy[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1037-1041,1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd