Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (10) : 1730-1738     DOI: 10.16511/j.cnki.qhdxxb.2021.26.030
BIOMEDICAL ENGINEERING |
Simple and high performance classification model for autism based on machine learning and pupillary response
LIU Qiangmo, HE Xu, ZHOU Baishun, WU Haolin, ZHANG Chi, QIN Yu, SHEN Xiaomei, GAO Xiaorong
Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(7396 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Early diagnosis of autism spectrum disorder (ASD) is very important for improving autism treatment.Recent studies have investigated early diagnosis of children with ASD using machine learning and eye tracking.This paper presents an eye tracking and pupillary response feature extraction method with a naive Bayes classification model for autism that was tested on the Autism Detection Dataset,a dataset of 25 children with ASD and 50 children with typical development aged 3-6 to identify abnormal pupillary responses in children with autism.The method has an average classification accuracy of 90.67% and an average AUC of 92.24% while using only the pupillary features for modeling,which is better than the 82.2% average accuracy achieved by a pupillary and gaze behavior feature model and 78% average accuracy achieved by a gaze behavior and kinematic feature model.This method is simple and accurate.The results show the effectiveness of this method and the feasibility of real clinical applications of this type for early autism diagnosis based on machine learning and eye tracking.
Keywords autism      machine learning      pupillary response      dassification model     
Issue Date: 03 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Qiangmo
HE Xu
ZHOU Baishun
WU Haolin
ZHANG Chi
QIN Yu
SHEN Xiaomei
GAO Xiaorong
Cite this article:   
LIU Qiangmo,HE Xu,ZHOU Baishun, et al. Simple and high performance classification model for autism based on machine learning and pupillary response[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1730-1738.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2021.26.030     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I10/1730
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] ROBEL L. Clinical features in autism[J]. Archives de Pédiatrie, 2009, 16(11):1507-1512.
[2] BILDT A DE, SYTEMA S, KETELAARS C, et al. Interrelationship between autism diagnostic observation schedule-generic (ADOS-G), autism diagnostic interview-revised (ADI-R), and the diagnostic and statistical manual of mental disorders (DSM-IV-TR) classification in children and adolescents with mental retardation[J]. Journal of Autism and Developmental Disorders, 2004, 34(2):129-137.
[3] 张琴. DSM-Ⅳ孤独症诊断标准与克氏行为量表对儿童孤独症的诊断评价[J].医学理论与实践, 2006, 19(5):586-587.ZHANG Q. The diagnosis and evaluation of DSM-Ⅳ autism criteria and Klinefelter Behavior Scale for children with autism[J]. The Journal of Medical Theory and Practice, 2006, 19(5):586-587.(in Chinese)
[4] 邬方彦,徐秀,刘静,等.孤独症筛查量表(CHAT-23)的应用研究[J].中国儿童保健杂志, 2010, 18(4):288-291. WU F Y, XU X, LIU J, et al. Study on the application of Autism Screening Scale (CHAT-23)[J]. Chinese Journal of Child Health Care, 2010, 18(4):288-291.(in Chinese)
[5] THABTAH F, PEEBLES D. A new machine learning model based on induction of rules for autism detection[J]. Health Informatics Journal, 2020, 26(1):264-286.
[6] MAO Y, HE Y, LIU L, et al. Disease classification based on eye movement features with decision tree and random forest[J]. Frontiers in Neuroscience, 2020, 14:798.
[7] VABALAS A, GOWEN E, POLIAKOFF E, et al. Applying machine learning to kinematic and eye movement features of a movement imitation task to predict autism diagnosis[J]. Scientific Reports, 2020, 10:8346.
[8] BAST N, BANASCHEWSKI T, DZIOBEK I, et al. Pupil dilation progression modulates aberrant social cognition in autism spectrum disorder[J]. Autism Research, 2019, 12(11):1680-1692.
[9] NYSTRÖM P, GLIGA T, JOBS E N, et al. Enhanced pupillary light reflex in infancy is associated with autism diagnosis in toddlerhood[J]. Nature Communications, 2018, 9(1):1678-1682.
[10] HALL C A, CHILCOTT R P. Eyeing up the future of the pupillary light reflex in neurodiagnostics[J]. Diagnostics, 2018, 8(1):19-38.
[11] DICRISCIO A S, HU Y, TROIANI V. Brief report:Pupillometry, visual perception, and ASD features in a task-switching paradigm[J]. Journal of Autism and Developmental Disorders, 2019, 49(12):5086-5099.
[12] DICRISCIO A S, HU Y, TROIANI V. Brief report:Visual perception, task-induced pupil response trajectories and ASD features in children[J]. Journal of Autism and Developmental Disorders, 2019, 49(7):3016-3030.
[13] DINALANKARA D M R, MILES J H, TAKAHASHI N, et al. Atypical pupillary light reflex in 2-6-year-old children with autism spectrum disorders:Pupillary light reflex in 2-6 years old[J]. Autism Research, 2017, 10(5):829-838.
[14] FAN X, MILES J H, TAKAHASHI N, et al. Sex-specific lateralization of contraction anisocoria in transient pupillary light reflex[J]. Investigative Opthalmology&Visual Science, 2009, 50(3):1137.
[15] DICRISCIO A S, TROIANI V. Pupil adaptation corresponds to quantitative measures of autism traits in children[J]. Scientific Reports, 2017, 7(1):6476-6484.
[16] DICRISCIO A S, HU Y, TROIANI V. Task-induced pupil response and visual perception in adults[J]. PLOS ONE, 2018, 13(12):e0209556.
[17] AGUILLON-HERNANDEZ N, MOFID Y, LATINUS M, et al. The pupil:A window on social automatic processing in autism spectrum disorder children[J]. Journal of Child Psychology and Psychiatry, 2020, 61(7):768-778.
[18] DICRISCIO A S, TROIANI V. Resting and functional pupil response metrics indicate features of reward sensitivity and ASD in children[J]. Journal of Autism and Developmental Disorders, 2021, 51(7):2416-2435.
[19] SARGSYAN D, JAGANNATHA S, MANYAKOV N V, et al. Feature selection with weighted importance index in an autism spectrum disorder study[J]. Statistics in Biopharmaceutical Research, 2019, 11(2):118-125.
[20] 何旭.面向自闭症早期诊断的眼动分析系统[D].北京:清华大学, 2019. HE X. Eye movement analysis system for early diagnosis of autism[D]. Beijing:Tsinghua University, 2019.(in Chinese)
[21] AMERICAN P. Diagnostic and statistical manual of mental disorders[J]. Encyclopedia of the Neurological Sciences, 1994, 25(2):4-8.
[22] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures.[J]. Analytical Chemistry, 1964, 36(8):1627-1639.
[23] FAN X, MILES J H, TAKAHASHI N, et al. Abnormal transient pupillary light reflex in individuals with autism spectrum disorders[J]. Journal of Autism and Developmental Disorders, 2009, 39(11):1499-1508.
[24] KOHAVI R, JOHN G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1-2):273-324.
[25] BATTITI R. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 1994, 5(4):537-550.
[1] WU Hao, NIU Fenglei. Machine learning model of radiation heat transfer in the high-temperature nuclear pebble bed[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1213-1218.
[2] DAI Xin, HUANG Hong, JI Xinyu, WANG Wei. Spatiotemporal rapid prediction model of urban rainstorm waterlogging based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 865-873.
[3] REN Jianqiang, CUI Yapeng, NI Shunjiang. Prediction method of the pandemic trend of COVID-19 based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 1003-1011.
[4] AN Jian, CHEN Yuxuan, SU Xingyu, ZHOU Hua, REN Zhuyin. Applications and prospects of machine learning in turbulent combustion and engines[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 462-472.
[5] ZHAO Qiming, BI Kexin, QIU Tong. Comparison and integration of machine learning based ethylene cracking process models[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1450-1457.
[6] CAO Laicheng, LI Yuntao, WU Rong, GUO Xian, FENG Tao. Multi-key privacy protection decision tree evaluation scheme[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 862-870.
[7] WANG Haojie, MA Zixuan, ZHENG Liyan, WANG Yuanwei, WANG Fei, ZHAI Jidong. Efficient memory allocator for the New Generation Sunway supercomputer[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 943-951.
[8] LU Sicong, LI Chunwen. Human-machine conversation system for chatting based on scene and topic[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 952-958.
[9] LI Wei, LI Chenglong, YANG Jiahai. As-Stream: An intelligent operator parallelization strategy for fluctuating data streams[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1851-1863.
[10] MA Xiaoyue, MENG Xiao. Image position and layout effects of multi-image tweets from the perspective of user engagement[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 77-87.
[11] TANG Zhili, WANG Xue, XU Qianjun. Rockburst prediction based on oversampling and objective weighting method[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 543-555.
[12] WANG Zhiguo, ZHANG Yujin. Anomaly detection in surveillance videos: A survey[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 518-529.
[13] SONG Yubo, QI Xinyu, HUANG Qiang, HU Aiqun, YANG Junjie. Two-stage multi-classification algorithm for Internet of Things equipment identification[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 365-370.
[14] LU Xiaofeng, JIANG Fangshuo, ZHOU Xiao, CUI Baojiang, YI Shengwei, SHA Jing. API based sequence and statistical features in a combined malware detection architecture[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 500-508.
[15] ZOU Quanchen, ZHANG Tao, WU Runpu, MA Jinxin, LI Meicong, CHEN Chen, HOU Changyu. From automation to intelligence: Survey of research on vulnerability discovery techniques[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(12): 1079-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd