Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2023, Vol. 63 Issue (3) : 338-347     DOI: 10.16511/j.cnki.qhdxxb.2021.26.043
Research Article |
Flat circular parachute with lateral mobility
CHEN Guanhua1, CHEN Yaqian1,4, ZHOU Ning1, JIA He2,3, RONG Wei3, XUE Xiaopeng1
1. School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;
2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
3. Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China;
4. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310013, China
Download: PDF(13491 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Parachutes provide rapid vertical deceleration, but are more useful if they also provide stable, controllable lateral movement. A simple, effective method for lateral motion is to cut asymmetrical slits or holes in the canopy. This study simulated flat circular parachute designs with asymmetric holes and slits. The flow fields and the drag and lateral force coefficients of several designs were compared to determine how effectively these parachutes provide lateral motion. The parachute with a 30° annular slit starting from the bottom of the canopy provides the best drag. Further design variations shortened the length of the annular seam and gradually added radial holes. In all the designs, the U-shaped slit greatly improves both the drag and the lateral motion of the parachute and gives the best stability with changes in the angle of attack.
Keywords parachutes      asymmetric canopy      lateral movement      aerodynamics      numerical simulation     
Issue Date: 04 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Guanhua
CHEN Yaqian
ZHOU Ning
JIA He
RONG Wei
XUE Xiaopeng
Cite this article:   
CHEN Guanhua,CHEN Yaqian,ZHOU Ning, et al. Flat circular parachute with lateral mobility[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 338-347.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2021.26.043     OR     http://jst.tsinghuajournals.com/EN/Y2023/V63/I3/338
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 余莉, 明晓. 降落伞技术的研究进展及展望[J]. 世界科技研究与发展, 2005, 27(5):21-25. YU L, MING X. Development history of parachute and its expectation[J]. World Sci-Tech R & D, 2005, 27(5):21-25. (in Chinese)
[2] 百度百科. 降落伞[EB/OL].[2021-08-20]. https://baike.baidu.com/item/%E9%99%8D%E8%90%BD%E4%BC%9E/80773?fr=aladdin#1. Baidu Daike. Parachute[EB/OL].[2021-08-20]. https://baike.baidu.com/item/%E9%99%8D%E8%90%BD%E4%BC%9E/80773?fr=aladdin#1.(in Chinese)
[3] 陈国良. 航天器回收着陆技术[J]. 航天返回与遥感, 2000, 21(1):9-15. CHEN G L. Recovery technology of spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2000, 21(1):9-15. (in Chinese)
[4] Para-Commander[EB/OL].[2021-08-20]. https://www.parachutehistory.com/round/pc.html.
[5] 简相辉, 金哲岩. 降落伞工作过程数值模拟研究综述[J]. 航空科学技术, 2016, 27(10):1-7. JIAN X H, JIN Z Y. Review on the development of numerical simulations on parachutes[J]. Aeronautical Science & Technology, 2016, 27(10):1-7. (in Chinese)
[6] 张德良. 计算流体力学教程[M]. 北京:高等教育出版社, 2010. ZHANG D L. A course in computational fluid dynamics[M]. Beijing:Higher Education Press, 2010. (in Chinese)
[7] 阎超. 计算流体力学方法及其应用[M]. 北京:北京航空航天大学出版社, 2006. YAN C. Computational fluid dynamics methods and applications[M]. Beijing:Higher Education Press, 2006. (in Chinese)
[8] 孙元. 内混式空气雾化液体碎裂模型研究及验证[D]. 西安:长安大学, 2019. SUN Y. Modeling research and verification on liquid breakup process of internal-mixing twin-fluid atomization[D]. Xi'an:Chang'an University, 2019. (in Chinese)
[9] 靳宏宇, 吴壮志, 王奇, 等. 面向降落伞稳态CFD计算的网格生成方法研究[J]. 航天返回与遥感, 2019, 40(4):30-37. JIN H Y, WU Z Z, WANG Q, et al. Research on mesh generation method for parachute steady-state CFD computing[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(4):30-37. (in Chinese)
[10] 蒋崇文, 曹义华, 苏文翰. 对称面圆周角对轴对称降落伞流场特性的影响[J]. 北京航空航天大学学报, 2006, 32(3):271-275. JIANG C W, CAO Y H, SU W H. Influence of circular angle in symmetric plane to the flowfield characteristics of an axisymmetric parachute[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(3):271-275. (in Chinese)
[11] JOHNSON D W. Testing of a new recovery parachute system for the F111 aircraft crew escape module[C]//10th Aerodynamic Decelerator Conference. Cocoa Beach, USA:AIAA, 1989:47-52.
[12] 蒋崇文, 曹义华, 苏文翰. 轴对称降落伞小迎角稳定下降时流场特性[J]. 中国空间科学技术, 2007, 27(2):59-65, 71. JIANG C W, CAO Y H, SU W H. Influence of low angle of attack on the flowfield characteristics of an axisymmetric parachute in terminal descent[J]. Chinese Space Science and Technology, 2007, 27(2):59-65, 71. (in Chinese)
[13] 甘小娇, 余莉, 杨雪. 环帆伞稳态气动性能研究[J]. 江苏航空, 2015(1):5-9. GAN X J, YU L, YANG X. Study on steady aerodynamic performance of ring-sail parasol[J]. Jiangsu Aviation, 2015(1):5-9. (in Chinese)
[14] 蒋崇文, 曹义华, 苏文翰. 轴对称降落伞稳定下降阶段的流场特性[J]. 航天返回与遥感, 2005, 26(3):10-15, 46. JIANG C W, CAO Y H, SU W H. The flowfield characteristics of an axisymmetric parachute in terminal descent[J]. Spacecraft Recovery & Remote Sensing, 2005, 26(3):10-15, 46. (in Chinese)
[15] SAHU J, COOPER G, BENNEY R. 3-D parachute descent analysis using coupled CFD and structural codes[C]//13th Aerodynamic Decelerator Systems Technology Conference. Clearwater Beach, USA:AIAA, 2019:269-277
[16] 连淇祥, 周民选. 凹半球降落伞模型在加速和定常流中的流场观测[J]. 航空学报, 1988, 9(1):84-90. LIAN Q X, ZHOU M X. Experimental investigation on rigid hollow hemispherical parachute model in accelerating and steady flow[J]. Acta Aeronautica et Astronautica Sinica, 1988, 9(1):84-90. (in Chinese)
[1] LI Yu, WANG Xiangqin, MIN Jingchun. Numerical simulation of fuel flow and heat transfer in a serpentine tube considering the fuel variable properties[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 337-345.
[2] SHI Yunjiao, ZHAO Ningbo, ZHENG Hongtao. Impact of inlet distortion on the flow characteristics of a heavy-duty gas turbine cylinder pressure[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 90-98.
[3] LI Congjian, GAO Hang, LIU Yi. Fast reconstruction of a wind field based on numerical simulation and machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 882-887.
[4] ZHONG Maohua, HU Peng, CHEN Junfeng, CHENG Huihang, WU Le, WEI Xuan. Research for smoke control in a subway tunnel under the ceiling multi-point vertical smoke exhaust[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 754-764.
[5] SUN Jihao, LUO Shaowen, ZHAO Ningbo, YANG Huiling, ZHENG Hongtao. Comparison of NOx numerical models for methane/air combustion simulations[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 623-632.
[6] SUN Yifan, ZHU Wei, WU Yuxin, QI Haiying. The applicability study of Gao-Yong turbulence model to boundary layer transitions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 642-648.
[7] LIU Yu, ZHAO Miao, ZHANG Zhang, JIA He, HUANG Wei. Simulation of thermochemical nonequilibrium flow around a conical deceleration structure[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 386-393,413.
[8] GAO Chang, LI Yanjun, YU Li, NIE Shunchen. Effect of sail fullness on the aerodynamic performance of ringsail parachutes[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 322-329.
[9] YAN Huihui, LI Haoyu, ZHOU Bohao, ZHANG Yuzhou, LAN Xudong. Research and optimization of the mechanism of centrifugal compressor[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1672-1685.
[10] GAO Qunxiang, SUN Qi, PENG Wei, ZHANG Ping, ZHAO Gang. Whole process simulation method of sulfuric acid decomposition in the iodine-sulfur cycle for hydrogen production[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 24-32.
[11] SHI Lin, XU Qianghui. Fundamental studies of air injection for heavy crude oil recovery and its applications[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 722-734.
[12] HE Xin, XUE Rui, ZHENG Xing, ZHANG Qian, GONG Jianliang. Skin friction reduction for boundary layer combustion in a scramjet engine[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 562-572.
[13] YAN Huihui, ZHOU Bohao, LI Hao, ZHANG Yuzhou, LAN Xudong. Turboshaft engine compressor design using ANSYS[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 549-554,580.
[14] ZHANG Zhihan, LIU Hui, L�Zhenlei, HOU Yansong, SUN Lifeng, WANG Shi, WU Zhaoxia, LIU Yaqiang. Design and numerical simulations of a large animal SPECT system[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1875-1883.
[15] HAN Yadong, TAN Lei, LIU Yabin. Mixed-flow pump impeller design based on the controllable blade load distribution[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1930-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd