Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (3) : 523-532     DOI: 10.16511/j.cnki.qhdxxb.2021.26.045
SPECIAL SECTION: INTELLIGENT TRANSPORTATION |
Vehicle body panel thickness optimization by a genetic algorithm
ZHOU Wei1, LI Min1,2, QIU Mingjun3, ZHANG Xilong1, LIU Jiang1, ZHANG Hongbo1
1. College of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China;
2. Key Lab of industrial Fluid Energy Conservation and Pollution Control(Qingdao University of Technology), Ministry of Education, Qingdao 266520, China;
3. China National Heavy Machinery Research Institute Co., Ltd., Xi'an 710032, China
Download: PDF(8937 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The interior noise in a vehicle can be reduced by optimizing the body panel thickness. A genetic algorithm was used to optimize the vehicle body panel thickness based on a coupled acoustic structure model of the vehicle body in HyperMesh. The Hammersley experimental design method was used to determine the response surfaces of the first-order global modal of the body-in-white, the body mass and the maximum sound pressure of a target point inside the vehicle. The maximum sound pressure at the target point was then used as the performance index in a genetic algorithm to optimize the vehicle body panel thickness. The optimum thickness reduced the maximum peak sound pressure at the target point by 4.0 dB. This algorithm gave 2.2% lower sound levels than a standard genetic algorithm, 2.2% lower than the global response search method, 2.3% lower than the adaptive response surface method and 2.5% lower than the feasible direction method, respectively. The results show that this genetic algorithm improves the stability and optimization ability of the genetic algorithm and this algorithm can efficiently optimize the vehicle body panel thickness.
Keywords vehicle body panel      genetic algorithm      finite element simulation      coupled acoustic-structure      vehicle sound levels     
Issue Date: 10 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Wei
LI Min
QIU Mingjun
ZHANG Xilong
LIU Jiang
ZHANG Hongbo
Cite this article:   
ZHOU Wei,LI Min,QIU Mingjun, et al. Vehicle body panel thickness optimization by a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 523-532.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2021.26.045     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I3/523
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 任栉翔. 基于有限元法的车内噪声控制与结构优化[D]. 镇江:江苏大学, 2017. REN Z X. Interior noise control and structure optimization based on finite element method[D]. Zhenjiang:Jiangsu University, 2017. (in Chinese)
[2] 聂祚兴. 车身噪声传递函数的全局灵敏度分析及稳健优化设计[D]. 长沙:湖南大学, 2012. NIE Z X. Global sensitivity analysis and robust optimal design for car body's noise transfer function[D]. Changsha:Hunan University, 2012. (in Chinese)
[3] KODIYALAM S, YANG R J, GU L, et al. Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment[J]. Structural and Multidisciplinary Optimization, 2004, 26(3):256-263.
[4] FANG J G, GAO Y K, SUN G Y, et al. Multiobjective reliability-based optimization for design of a vehicledoor[J]. Finite Elements in Analysis and Design, 2013, 67:13-21.
[5] 张博文, 吴光强, 黄焕军. 基于迭代更新近似模型的车内噪声优化[J]. 计算力学学报, 2016, 33(1):33-38. ZHANG B W, WU G Q, HUANG H J. Optimization of interior noise in vehicle based on iteratively updating approximation model[J]. Chinese Journal of Computational Mechanics, 2016, 33(1):33-38. (in Chinese)
[6] ZHANG Z Y, ZHANG Y B, HUANG C X, et al. Low-noise structure optimization of a heavy commercial vehicle cab based on approximation model[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4):987-1002.
[7] CHEN Y, QIU N N, ZANG L B, et al. Investigation into transmission radiated noise during the acceleration of electric buses based on response surface methodology[J]. International Journal of Vehicle Design, 2020, 82(1-4):205-223.
[8] JIANG Y Z, WU P B, ZENG J, et al. Multi-parameter and multi-objective optimisation of articulated monorail vehicle system dynamics using genetic algorithm[J]. Vehicle System Dynamics, 2020, 58(1):74-91.
[9] 曹银行, 柳贡民, 张龙. 基于遗传算法的分支管路系统动力学优化设计[J]. 振动与冲击, 2021, 40(9):221-227, 253. CAO Y H, LIU G M, ZHANG L. Dynamic optimization design of branch pipeline system based on genetic algorithm[J]. Journal of Vibration and Shock, 2021, 40(9):221-227, 253. (in Chinese)
[10] 曾发林, 刘雅晨, 胡枫. 语音清晰度车身面板贡献量分析与优化[J]. 振动与冲击, 2021, 40(7):68-74. ZENG F L, LIU Y C, HU F. Speech intelligibility auto body panel contribution analysis and optimization[J]. Journal of Vibration and Shock, 2021, 40(7):68-74. (in Chinese)
[11] 王立平, 孔祥昱, 于广. 基于遗传算法的并混联机床电机伺服控制参数整定[J]. 清华大学学报(自然科学版), 2021, 61(10):1106-1114. WANG L P, KONG X Y, YU G. Motor servo control parameter tuning for parallel and hybrid machine tools based on a genetic algorithm[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(10):1106-1114. (in Chinese)
[12] SHEN Y J, JIA M Q, YANG K, et al. Optimal design and dynamic performance analysis based on the asymmetric-damping vehicle ISD suspension[J]. Shock and Vibration, 2021:9996563.
[13] 董志贵, 王福林. 基于改进遗传算法的拖拉机转向梯形优化设计[J]. 农机化研究, 2022, 44(1):248-252, 258. DONG Z G, WANG F L. Optimization design of tractor steering trapezoid based on improved genetic algorithm[J]. Journal of Agricultural Mechanization Research, 2022, 44(1):248-252, 258. (in Chinese)
[14] 陈文, 徐晓龙, 钟晓伟, 等. 基于改进遗传算法的环形倒立摆PID参数整定[J]. 计算机仿真, 2021, 38(3):165-169. CHEN W, XU X L, ZHONG X W, et al. Parameter tuning of PID controller for annular inverted pendulum system based on improved genetic algorithm[J]. Computer Simulation, 2021, 38(3):165-169. (in Chinese)
[15] ECKERT J J, SANTICIOLLI F M, SILVA L C A, et al. Vehicledrivetrain design multi-objective optimization[J]. Mechanism and Machine Theory, 2021, 156:104123.
[16] 袁培佩. 乘用车声固耦合有限元模态分析[D]. 西安:长安大学, 2014. YUAN P P. Element modes analyses of the acoustic and structure coupling system[D]. Xi'an:Chang'an University, 2014. (in Chinese)
[17] 惠巍, 刘更, 吴立言. 轿车声固耦合低频噪声的有限元分析[J]. 汽车工程, 2006, 28(12):1070-1073, 1077. HUI W, LIU G, WU L Y. Finite element analysis on the car interior low-frequency noise with acoustic-structural coupling[J]. Automotive Engineering, 2006, 28(12):1070-1073, 1077. (in Chinese)
[18] 赵彤航. 基于传递路径分析的汽车车内噪声识别与控制[D]. 长春:吉林大学, 2008. ZHAO T H. Vehicle interior noise identification and control based on transfer path analysis[D]. Changchun:Jilin University, 2008. (in Chinese)
[19] 靳晓雄, 张立军, 江浩. 汽车振动分析[M]. 上海:同济大学出版社, 2002. JIN X X, ZHANG L J, JIANG H. Automobile vibration analysis[M]. Shanghai:Tongji University Press, 2002. (in Chinese)
[20] 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 3版. 南京:南京大学出版社, 2012. DU G H, ZHU Z M, GONG X F. Fundamentals of acoustics[M]. 3rd ed. Nanjing:Nanjing University Press, 2012. (in Chinese)
[21] 赵静, 周鋐, 梁映珍, 等. 车身板件振动声学贡献分析与优化[J]. 机械工程学报, 2010, 46(24):96-100. ZHAO J, ZHOU H, LIANG Y Z, et al. Vehicle body panel acoustic contribution analysis and optimization[J]. Journal of Mechanical Engineering, 2010, 46(24):96-100. (in Chinese)
[1] HUANG Ailing, WANG Zijian, ZHANG Zhe, LI Mingjie, SONG Yue. Capacity-matching model of landside multiple transport modes for large airports considering the impact of carbon emissions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1729-1740.
[2] DAI Xin, CHEN Jushi, CHEN Tao, HUANG Hong, LI Zhipeng, YU Shuiping. Multi-objective optimization method and case analysis for emergency drainage of pumped storage power station[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1558-1565.
[3] YU Jingchi, JIN Aiyun, PAN Jianwen, WANG Jinting, ZHANG Chuhan. GA-BP artificial neural networks for predicting the seismic response of arch dams[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1321-1329.
[4] HUANG Weican, JIANG Xiaohua, XUE Peng, LI Xinyang, SHEN Zhidong, SUN Yuguang. Conductor design in bipolar superconducting DC energy pipelines[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1715-1720.
[5] WANG Jundong, ZHAO Yuezhe. Stepped sound diffuser arrangement and diffusion analysis[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 261-268.
[6] WANG Liping, KONG Xiangyu, YU Guang. Motor servo control parameter tuning for parallel and hybrid machine tools based on a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1106-1114.
[7] KARI·Tusongjiang, GAO Wensheng, ZHANG Ziwei, MO Wenxiong, WANG Hongbing, CUI Yiping. Power transformer fault diagnosis based on a support vector machine and a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 623-629.
[8] FENG Ke, WANG Shouqing, XUE Yanguang. Optimization of PPP project equity structures based on the satisfactions of the main stakeholders[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 376-381.
[9] SUN Zhiyuan, LU Huapu. Optimal traffic sensor layout model considering traffic big data[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 743-750.
[10] JIA Xiaohong, CHEN Huaming, LI Xinggen, WANG Yuming. Mechanical properties of a graphite gasket sealing interface[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 167-170.
[11] LIU Zhe, JIN Dafeng, FAN Zhirui. Laminate optimization of a composite stiffened panel based on surrogate model[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(7): 782-789.
[12] HU Qingdong, ZENG Zhi, MA Hao, CHENG Jianping, LI Junli, ZHANG Hui, WANG Xin, WU Zhen. Measurement of indoor natural neutron spectrum with a Bonner sphere spectrometer[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(12): 1332-1334,1341.
[13] Rongtao DING. Organization method for port logistics chain's cloud service based on cooperative game theory[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 366-372.
[14] Haiyan ZHAO, Xingquan XU, Xingzhe YU, Xiaowu ZHU. Residual welding stresses in the pipe-bar joints of a rotary drilling rig[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 191-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd