Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (9) : 1458-1466     DOI: 10.16511/j.cnki.qhdxxb.2022.21.014
PROCESS SYSTEMS ENGINEERING |
Remaining useful life prediction of fan belts based on destructive experiments and autoencoders
ZHAO Zeheng, ZHAO Jinsong
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(7577 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A smart system predicting the remaining useful life (RUL) of fan belts can ensure the safety of chemical engineering processes and reduce human labor. In this study, the features extracted from the vibration signals of the belt are fed into a stacked autoencoder (SAE) to obtain the health indicator (HI). Then, a polynomial is fitted using the HI to calculate the RUL of the belt. The destructive experiment is conducted to shorten the data collection period, and a loss function is constructed to fit the destructive experiment. This study also improved the structure of the SAE, i.e., the inner product and the activation operation of the middle layer are separately done in two neurons. This bounds the HI in [0,1] and preserves more information from the encoding layers. Compared with traditional SAEs, the proposed method reduces the prediction errors in real cases. The errors of the predicted RUL are bounded by 1 d in the last 50% of the sections of all three datasets. The trained model also performs well when employed on an online test.
Keywords fault diagnosis      autoencoder      remaining useful life prediction     
Issue Date: 18 August 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Zeheng
ZHAO Jinsong
Cite this article:   
ZHAO Zeheng,ZHAO Jinsong. Remaining useful life prediction of fan belts based on destructive experiments and autoencoders[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1458-1466.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.21.014     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I9/1458
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] LI W B, XIN Z X. Flexural fatigue life prediction of a tooth V-belt made of fiber reinforced rubber[J]. International Journal of Fatigue, 2018, 111: 269-277. DOI: 10.1016/j.ijfatigue.2018.02.025.
[2] SUNDARARAMAN S, LIANG G, CHANDRASHEKHARA K, et al. Mode-I fatigue crack growth analysis of V-ribbed belts[J]. Finite Elements in Analysis and Design, 2007, 43(11-12): 870-878. DOI: 10.1016/j.finel.2007.05.003.
[3] SAFIZADEH M S, LATIFI S K. Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell[J]. Information Fusion, 2014, 18: 1-8. DOI: 10.1016/j.inffus.2013.10.002.
[4] CONG F Y, CHEN J, DONG G M, et al. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis[J]. Journal of Sound and Vibration, 2013, 332(8): 2081-2097. DOI: 10.1016/j.jsv.2012.11.029.
[5] GLOWACZ A, GLOWACZ W, GLOWACZ Z, et al. Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals[J]. Measurement, 2018, 113: 1-9. DOI: 10.1016/j.measurement.2017.08.036.
[6] LEI Y G, LI N P, GUO L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834. DOI: 10.1016/j.ymssp.2017.11.016.
[7] KHAZAEE M, BANAKAR A, GHOBADIAN B, et al. Remaining useful life (RUL) prediction of internal combustion engine timing belt based on vibration signals and artificial neural network[J]. Neural Computing and Applications, 2021, 33(13): 7785-7801. DOI: 10.1007/s00521-020-05520-3.
[8] QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(4-5): 1066-1090. DOI: 10.1016/j.jsv.2005.03.007.
[9] VILLA L F, RE?ONES A, PER?N J R, et al. Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load[J]. Mechanical Systems and Signal Processing, 2012, 29: 436-446. DOI: 10.1016/j.ymssp.2011.12.013.
[10] SCHIJVE J. Four lectures on fatigue crack growth[J]. Engineering Fracture Mechanics, 1979, 11(1): 169-181. DOI: 10.1016/0013-7944(79)90039-0.
[11] BENKEDJOUH T, MEDJAHER K, ZERHOUNI N, et al. Remaining useful life estimation based on nonlinear feature reduction and support vector regression[J]. Engineering Applications of Artificial Intelligence, 2013, 26(7): 1751-1760. DOI: 10.1016/j.engappai.2013.02.006.
[12] IBRAHIM M, STEINER N Y, JEMEI S, et al. Wavelet-based approach for online fuel cell remaining useful lifetime prediction[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 5057-5068. DOI: 10.1109/tie.2016.2547358.
[13] CHEN C, XU T H, WANG G, et al. Railway turnout system RUL prediction based on feature fusion and genetic programming[J]. Measurement, 2020, 151: 107162. DOI: 10.1016/j.measurement.2019.107162.
[14] YAN B X, MA X B, HUANG G F, et al. Two-stage physics-based Wiener process models for online RUL prediction in field vibration data[J]. Mechanical Systems and Signal Processing, 2021, 152: 107378. DOI: 10.1016/j.ymssp.2020.107378.
[15] BARRAZA-BARRAZA D, TERCERO-G?MEZ V G, BERUVIDES M G, et al. An adaptive ARX model to estimate the RUL of aluminum plates based on its crack growth[J]. Mechanical Systems and Signal Processing, 2017, 82: 519-536. DOI: 10.1016/j.ymssp.2016.05.041.
[16] TANDON N. A comparison of some vibration parameters for the condition monitoring of rolling element bearings[J]. Measurement, 1994, 12(3): 285-289. DOI: 10.1016/0263-2241(94)90033-7.
[17] YADAV S K, TYAGI K, SHAH B, et al. Audio signature-based condition monitoring of internal combustion engine using FFT and correlation approach[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(4): 1217-1226. DOI: 10.1109/tim.2010.2082750.
[18] ZHANG Z X, SI X S, HU C H. An age-and state-dependent nonlinear prognostic model for degrading systems[J]. IEEE Transactions on Reliability, 2015, 64(4): 1214-1228. DOI: 10.1109/tr.2015.2419220.
[19] RAI A, KIM J M. A novel health indicator based on the Lyapunov exponent, a probabilistic self-organizing map, and the Gini-Simpson index for calculating the RUL of bearings[J]. Measurement, 2020, 164: 108002. DOI: 10.1016/j.measurement.2020.108002.
[20] CHEN D L, QIN Y, WANG Y, et al. Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction[J]. ISA Transactions, 2021, 114: 44-56. DOI: 10.1016/j.isatra.2020.12.052.
[21] QIAN Y N, YAN R Q, HU S J. Bearing degradation evaluation using recurrence quantification analysis and Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(11): 2599-2610. DOI: 10.1109/tim.2014.2313034.
[22] SHE D M, JIA M P, PECHT M G. Sparse auto-encoder with regularization method for health indicator construction and remaining useful life prediction of rolling bearing[J]. Measurement Science and Technology, 2020, 31(10): 105005. DOI: 10.1088/1361-6501/ab8c0f.
[23] SHEN C Q, QI Y M, WANG J, et al. An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder[J]. Engineering Applications of Artificial Intelligence, 2018, 76: 170-184. DOI: 10.1016/j.engappai.2018.09.010.
[1] PING Guolou, ZENG Tingyu, YE Xiaojun. Unsupervised network traffic anomaly detection based on score iterations[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 819-824.
[2] LIU Shudong, ZHANG Jiani, CHEN Xu. Review-aware heterogeneous variational autoencoder recommendation model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 88-97.
[3] SONG Jia, SHI Ruoling, GUO Xiaohong, LIU Yang. KELM based diagnostics for air vehicle faults[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 795-803.
[4] LIU Weidong, LIU Yaning. Variational autoencoder with side information in recommendation systems[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 698-702.
[5] DONG Chunling, ZHAO Yue, ZHANG Qin. Cubic causality modeling and uncertain inference method for dynamic fault diagnosis[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 614-622.
[6] KARI·Tusongjiang, GAO Wensheng, ZHANG Ziwei, MO Wenxiong, WANG Hongbing, CUI Yiping. Power transformer fault diagnosis based on a support vector machine and a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 623-629.
[7] YANG Wen, ZHAO Qianchuan. Fault detection in HVAC systems based on energy balances[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1272-1279.
[8] ZHAO Yue, DONG Chunling, ZHANG Qin. Fault diagnostics using DUCG incomplex systems[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(5): 530-537,543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd