Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2023, Vol. 63 Issue (1) : 33-43     DOI: 10.16511/j.cnki.qhdxxb.2022.21.027
MECHANICAL ENGINEERING |
Modal parameter estimates for a magnetic levitation planar motor based on density clustering
SUN Haobo, YANG Kaiming, ZHU Yu, LU Sen
Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084, China
Download: PDF(14745 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Lightweight designs are needed for high acceleration and deceleration rates of a magnetic levitation planar motor (MLPM), but lightweight designs also lead to unacceptable vibrations in the MLPM. Accurate estimates of the MLPM modal parameters are the key to suppressing the vibrations. This paper presents a modal parameter estimation method based on density clustering. The system parametric frequency response function is obtained using a two-step iterative identification algorithm. Then, the DBSCAN algorithm is used for the modal analysis to remove the unstable mathematical modes. The outliers of the physical modes are also removed based on a normal distribution to obtain the final modal parameters. Simulations and tests show that this method can accurately estimate the system modal parameters.
Keywords magnetic levitation planar motor      density clustering      modal parameter estimates     
Issue Date: 11 January 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Haobo
YANG Kaiming
ZHU Yu
LU Sen
Cite this article:   
SUN Haobo,YANG Kaiming,ZHU Yu, et al. Modal parameter estimates for a magnetic levitation planar motor based on density clustering[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 33-43.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.21.027     OR     http://jst.tsinghuajournals.com/EN/Y2023/V63/I1/33
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 殷佳琪, 潘涛. 集成电路产业综述[J]. 科技资讯, 2021, 19(28): 54-58, 63. YIN J Q, PAN T. Overview of integrated circuit industry[J]. Science & Technology Information, 2021, 19(28): 54-58, 63. (in Chinese)
[2] 袁琼雁, 王向朝. 国际主流光刻机研发的最新进展[J].激光与光电子学进展, 2007, 44(1): 57-64. YUAN Q Y, WANG X Z. Recent development of international mainstream lithographic tools[J]. Laser & Optoelectronics Progress, 2007, 44(1): 57-64. (in Chinese)
[3] 郭乾统, 李博. 基于光刻机全球产业发展状况分析我国光刻机突破路径[J]. 集成电路应用, 2021, 38(9): 1-3. GUO Q T, LI B. Analysis on breakthrough path of lithography in china based on development of lithography industry in the world[J]. Applications of IC, 2021, 38(9): 1-3. (in Chinese)
[4] 彭祎帆, 袁波, 曹向群. 光刻机技术现状及发展趋势[J].光学仪器, 2010, 32(4): 80-85. PENG Y F, YUAN B, CAO X Q. Technical status and developing trend of lithographic tools[J]. Optical Instruments, 2010, 32(4): 80-85. (in Chinese)
[5] GUILLAUME P, VERBOVEN P, VANLANDUIT S, et al. A poly-reference implementation of the least-squares complex frequency-domain estimator[C]// Proceedings of the 21st International Modal Analysis Conference. Kissimmee, USA: SEM Press, 2003: 183-192.
[6] SANATHANAN C, KOERNER J. Transfer function synthesis as a ratio of two complex polynomials[J]. IEEE Transactions on Automatic Control, 1963, 8(1): 56-58.
[7] VOORHOEVE R, DE ROZARIO R, AANGENENT W, et al. Identifying position-dependent mechanical systems: A modal approach applied to a flexible wafer stage[J]. IEEE Transactions on Control Systems Technology, 2021, 29(1): 194-206.
[8] VOORHOEVE R, DE ROZARIO R, OOMEN T. Identification for motion control: Incorporating constraints and numerical considerations[C]// Proceedings of 2016 American Control Conference. Boston, USA: IEEE, 2016: 6209-6214.
[9] VAN DER AUWERAER H, PEETERS B. Discriminating physical poles from mathematical poles in high order systems: Use and automation of the stabilization diagram[C]// Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference. Como, Italy: IEEE, 2004: 2193-2198.
[10] VAN DER AUWERAER H, GUILLAUME P, VERBOVEN P, et al. Application of a fast-stabilizing frequency domain parameter estimation method[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2001, 123(4): 651-658.
[11] EL-KAFAFY M, GUILLAUME P, PEETERS B. Modal parameter estimation by combining stochastic and deterministic frequency-domain approaches[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 52-68.
[12] REYNDERS E, HOUBRECHTS J, DE ROECK G. Fully automated (operational) modal analysis[J]. Mechanical Systems and Signal Processing, 2012, 29: 228-250.
[13] NEU E, JANSER F, KHATIBI A A, et al. Fully automated operational modal analysis using multi-stage clustering[J]. Mechanical Systems and Signal Processing, 2017, 84: 308-323.
[14] VERBOVEN P, CAUBERGHE B, PARLOO E, et al. User-assisting tools for a fast frequency-domain modal parameter estimation method[J]. Mechanical Systems and Signal Processing, 2004, 18(4): 759-780.
[15] DEVRIENDT C, MAGALHÃES F, WEIJTJENS W, et al. Structural health monitoring of offshore wind turbines using automated operational modal analysis[J]. Structural Health Monitoring-An International Journal, 2014, 13(6): 644-659.
[16] RAINIERI C, FABBROCINO G. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 512-534.
[17] MAGALHÃES F, CUNHA Á, CAETANO E. Online automatic identification of the modal parameters of a long span arch bridge[J]. Mechanical Systems and Signal Processing, 2009, 23(2): 316-329.
[18] 黄涛. 柔性结构超精密多输入多输出运动系统建模与控制研究[D]. 北京: 清华大学, 2017. HUANG T. Modeling and control for ultra-precision MIMO motion system with flexible structures[D]. Beijing: Tsinghua University, 2017. (in Chinese)
[19] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland, USA: AAAI, 1996: 226-231.
[20] SIBSON R. A brief description of natural neighbor interpolation[M]// BARNETT V. Interpreting Multivariate Data. New York, USA: John Wiley & Sons, 1981: 21-36.
[1] LUO Xinyuan, CHEN Xin, SHOU Lidan, CHEN Ke, WU Yanjing. Semantic trajectory extraction framework for indoor space[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 186-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd