Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2023, Vol. 63 Issue (1) : 44-51     DOI: 10.16511/j.cnki.qhdxxb.2022.21.030
MECHANICAL ENGINEERING |
Joint surface model based on total reflection optical image
LUO Zhijun1,2, YAN Shaoze1
1. School of Mechanics, Tsinghua University, Beijing 100084, China;
2. PhD Innovation Workstation of Unit 96963 of China People's Liberation Army, Beijing 100084, China
Download: PDF(8393 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The joint contact characteristics of mechanical structures strongly influence the stiffness, damping and other dynamic characteristics. Many contact models have been developed, but they are based on different theoretical models with some even giving diametrically opposed physical interpretations. This study used the total reflection method and image processing to study the evolution of polymethyl methacrylate (PMMA) contact spots loaded with positive pressures. The observations show that the variation of contact spots under normal force has three stages: the first stage is the linear increasing region under light loads, the second and third stages are the nonlinear increasing region under heavy loads. With light loads, the number of contact spots and the contact area are consistent with those predicted by the Greenwood-Williamson (GW) model, but differ from those predicted by the Majumdar-Bhushan (MB) model. With heavy loads, the GW and MB models both cannot adequately predict the physical characteristics due to the bulk deformation with heavy loads leading to smaller actual contact areas. Thus, more accurate contact model would be obtained when the influence of the bulk deformation is considered.
Keywords real contact area      contact model      GW model      MB model     
Issue Date: 11 January 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Zhijun
YAN Shaoze
Cite this article:   
LUO Zhijun,YAN Shaoze. Joint surface model based on total reflection optical image[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 44-51.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.21.030     OR     http://jst.tsinghuajournals.com/EN/Y2023/V63/I1/44
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 温淑花, 张学良, 陈永会, 等. 结合面切向接触等效黏性阻尼分形模型[J]. 西安交通大学学报, 2017, 51(1): 1-8, 50. WEN S H, ZHANG X L, CHEN Y H, et al. Fractal model of equivalent viscous damping for tangential contact in joint interfaces[J]. Journal of Xi'an Jiaotong University, 2017, 51(1): 1-8, 50. (in Chinese)
[2] 李辉光, 刘恒, 虞烈. 粗糙机械结合面的接触刚度研究[J]. 西安交通大学学报, 2011, 45(6): 69-74. LI H G, LIU H, YU L. Contact stiffness of rough mechanical joint surface[J]. Journal of Xi'an Jiaotong University, 2011, 45(6): 69-74. (in Chinese)
[3] BOWDEN F P, TABOR D. The area of contact between stationary and moving surfaces[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1939, 169(938): 391-413.
[4] GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966, 295(1442): 300-319.
[5] WHITEHOUSE D J, ARCHARD J F. The properties of random surfaces of significance in their contact[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1970, 316(1524): 97-121.
[6] ONIONS R A, ARCHARD J F. The contact of surfaces having a random structure[J]. Journal of Physics D: Applied Physics, 1973, 6(3): 289-304.
[7] MAJUMDAR A, BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology, 1991, 113(1): 1-11.
[8] KOGUT L, ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69(5): 657-662.
[9] CHANG W R, ETSION I, BOGY D B. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109(2): 257-263.
[10] ZHAO Y W, MAIETTA D M, CHANG L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1): 86-93.
[11] RUBINSTEIN S M, COHEN G, FINEBERG J. Detachment fronts and the onset of dynamic friction[J]. Nature, 2004, 430(7003): 1005-1009.
[12] RUBINSTEIN S M, COHEN G, FINEBERG J. Visualizing stick–slip: Experimental observations of processes governing the nucleation of frictional sliding[J]. Journal of Physics D: Applied Physics, 2009, 42(21): 214016.
[13] RUBINSTEIN S M, COHEN G, FINEBERG J. Dynamics of precursors to frictional sliding[J]. Physical Review Letters, 2007, 98(22): 226103.
[14] BEN-DAVID O, RUBINSTEIN S M, FINEBERG J. Slip-stick and the evolution of frictional strength[J]. Nature, 2010, 463(7277): 76-79.
[15] SONG B J, YAN S Z. Relationship between the real contact area and contact force in pre-sliding regime[J]. Chinese Physics B, 2017, 26(7): 074601.
[16] KRICK B A, VAIL J R, PERSSON B N J, et al. Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments[J]. Tribology Letters, 2012, 45(1): 185-194.
[17] EGUCHI M, HIRAYANAGI T, MIYOSHI T. Statistical measurement of real contact area on the basis of image intensity histograms (Part 2): Application to paper-based wet friction materials[J]. Journal of Japanese Society of Tribologists, 2012, 57(5): 353-360.
[18] SONG B J, YAN S Z, XIANG W W K. A measurement method for distinguishing the real contact area of rough surfaces of transparent solids using improved Otsu technique[J]. Chinese Physics B, 2015, 24(1): 014601.
[19] 洪向共, 周世芬. 基于改进模糊C均值聚类的光伏面板红外图像分割[J]. 计算机系统应用, 2019, 28(5): 35-41. HONG X G, ZHOU S F. Infrared image segmentation of photovoltaic panel based on improved fuzzy C-means clustering[J]. Computer Systems & Applications, 2019, 28(5): 35-41. (in Chinese)
[20] OTSU N. An automatic threshold selection method based on discriminate and least squares criteria[J]. Denshi Tsushin Gakkai Ronbunshi, 1979, 63: 349-356.
[21] SAUVOLA J, PIETIKÄINEN M. Adaptive document image binarization[J]. Pattern Recognition, 2000, 33(2): 225-236.
[22] NIBLACK W. An introduction to digital image processing[M]. Birkeroed, Denmark: Strandberg Publishing Company, 1985.
[23] 石为人, 方莉, 陈舒涵. 基于改进Otsu和Niblack的图像二值化方法[J]. 世界科技研究与发展, 2013, 35(3): 395-398. SHI W R, FANG L, CHEN S H. Algorithm for image binarization based on improved Otsu and Niblack[J]. World Sci-Tech R&D, 2013, 35(3): 395-398. (in Chinese)
[24] LAZZARA G, GÉRAUD T. Efficient multiscale Sauvola's binarization[J]. International Journal on Document Analysis and Recognition (IJDAR), 2014, 17(2): 105-123.
[25] MORAG Y, ETSION I. Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces[J]. Wear, 2007, 262(5-6): 624-629.
[26] PERSSON B N J, TOSATTI E. The effect of surface roughness on the adhesion of elastic solids[J]. The Journal of Chemical Physics, 2001, 115(12): 5597-5610.
[27] POHRT R, POPOV V L. Contact stiffness of randomly rough surfaces[J]. Scientific Reports, 2013, 3: 3293.
[28] ZHAO Y W, CHANG L. A model of asperity interactions in elastic-plastic contact of rough surfaces[J]. Journal of Tribology, 2001, 123(4): 857-864.
[29] CIAVARELLA M, GREENWOOD J A, PAGGI M. Inclusion of “interaction” in the Greenwood and Williamson contact theory[J]. Wear, 2008, 265(5-6): 729-734.
[1] CHANG Xu, YANG Dongchao, SUN Keping, ZHU Heng, YANG Qiyao. Analysis of the normal indentation process caused by tractor wheels[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 537-543.
[2] SUN Keping, YANG Dongchao, CHANG Xu, ZHU Heng, LU Peixin, CHEN Ken. Analysis of oblique indentations caused by the tractor driving wheel and the casing pipe wall[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 1016-1028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd