Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (12) : 1906-1914     DOI: 10.16511/j.cnki.qhdxxb.2022.22.011
HYDRAULIC ENGINEERING |
Numerical simulations of hydrodynamic dispersion based on an equivalent pore network model
ZHANG Xinghao, LIN Dantong, HU Liming
State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(6965 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  An equivalent pore network model (EPNM) describes complex pore structures in a porous media by statistical parameters. Previous studies using such models have focused on seepage and mechanical dispersion, with few studies considering the effect of molecular diffusion on solute transport. In this study, the convection, molecular diffusion and mechanical dispersion of solutes in porous media were studied using an EPNM to predict the solute transport in porous media. A sensitivity analysis of the model parameters was used to study the effect of the pore structure characteristics on the effective diffusion coefficient of the porous media. The influence of molecular diffusion on the hydrodynamic dispersion was analyzed by comparing numerical results with and without molecular diffusion. The results show that the effective diffusion coefficient, which negatively correlates with the throat curvature and positively correlates with the coordinate number and the connection number ratio, is affected by both the pore volume and the pore-throat diffusion capacity. The molecular diffusion correlates with the convection-induced mechanical dispersion to accelerate the solute transport in the low-velocity region. The results of this study show the microscopic mechanisms influencing molecular diffusion for hydrodynamic dispersion as a theoretical basis for predicting the solute transport flux in pore network models.
Keywords contaminant transport      hydrodynamic dispersion      molecular diffusion      porous media      equivalent pore network model (EPNM)     
Issue Date: 10 November 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xinghao
LIN Dantong
HU Liming
Cite this article:   
ZHANG Xinghao,LIN Dantong,HU Liming. Numerical simulations of hydrodynamic dispersion based on an equivalent pore network model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1906-1914.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.22.011     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I12/1906
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] XING W W, HU L M. Centrifuge modeling of light non-aqueous phase liquid migration[J]. Journal of Tsinghua University (Science and Technology), 2006, 46(3): 341-345. (in Chinese) 邢巍巍, 胡黎明. 轻非水相流体污染物运移的离心模型[J]. 清华大学学报(自然科学版), 2006, 46(3): 341-345.
[2] MENG X M, TIAN F Q, HU H P. Specific vulnerability assessment model for the confined aquifer in a leakage area[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(6): 844-847. (in Chinese) 孟宪萌, 田富强, 胡和平. 越流区承压含水层特殊脆弱性评价模型[J]. 清华大学学报(自然科学版), 2010, 50(6): 844-847.
[3] Ministry of Ecology and Environment of the People's Republic of China. 2020 China ecological environment state bulletin[R/OL]. (2021-05-26) [2021-06-23]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/. (in Chinese) 中华人民共和国生态环境部. 2020中国生态环境状况公报[R/OL]. (2021-05-26) [2021-06-23]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/.
[4] ZHUANG G T. Current situation of national soil pollution and strategies on prevention and control[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 477-483. (in Chinese) 庄国泰. 我国土壤污染现状与防控策略[J]. 中国科学院院刊, 2015, 30(4): 477-483.
[5] WANG H T. Dynamics of fluid flow and contaminant transport in porous media[M]. Beijing: Higher Education Press, 2008. (in Chinese) 王洪涛. 多孔介质污染物迁移动力学[M]. 北京: 高等教育出版社, 2008.
[6] FETTER C W. Contaminant hydrology[M]. 2nd ed. Englewood Cliffs, USA: Prentice Hall, 1999.
[7] ZHANG P W. Pore-structure model of geo-materials and micro-mechanics model for seepage[D]. Beijing: Tsinghua University, 2017. (in Chinese) 张鹏伟. 岩土介质孔隙结构及微观渗流力学模型研究[D]. 北京: 清华大学, 2017.
[8] GAO S Y, MEEGODA J N, HU L M. Two methods for pore network of porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(18): 1954-1970.
[9] HU L M, GUO H H, ZHANG P W, et al. Pore-network model for geo-materials[C]// Proceedings of GeoShanghai 2018 International Conference: Multi-Physics Processes in Soil Mechanics and Advances in Geotechnical Testing. Singapore: Springer, 2018: 236-243.
[10] ZHANG P W, HU L M, MEEGODA J N, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. (in Chinese) 张鹏伟, 胡黎明, MEEGODA J N, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报, 2020, 42(1): 37-45.
[11] FATT I. The network model of porous media[J]. Transactions of the AIME, 1956, 207(1): 144-181.
[12] NICHOLSON D, PETROPOULOS J H. Capillary models for porous media: Ⅲ. Two-phase flow in a three-dimensional network with Gaussian radius distribution[J]. Journal of Physics D: Applied Physics, 1971, 4(2): 181-189.
[13] ACHARYA R C, VAN DER ZEE S E A T M, LEIJNSE A. Porosity-permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous media[J]. Advances in Water Resources, 2004, 27(7): 707-723.
[14] LV Q F, WANG E Z, LIU X L, et al. Determining the intrinsic permeability of tight porous media based on bivelocity hydrodynetics[J]. Microfluidics and Nanofluidics, 2014, 16(5): 841-848.
[15] RAOOF A. Reactive/adsorptive transport in (partially-) saturated porous media: From pore scale to core scale[D]. Utrecht, The Netherlands: Utrecht University, 2011.
[16] ZHANG P, HU L, WEN Q, et al. A multi-flow regimes model for simulating gas transport in shale matrix[J]. Géotechnique Letters, 2015, 5(3): 231-235.
[17] ZHANG P W, HU L M, MEEGODA J N, et al. Micro/nano-pore network analysis of gas flow in shale matrix[J]. Scientific Reports, 2015, 5(1): 13501.
[18] ZHANG P W, HU L M, MEEGODA J N. Pore-scale simulation and sensitivity analysis of apparent gas permeability in shale matrix[J]. Materials, 2017, 10(2): 104.
[19] ZHANG D, ZHANG X H, GUO H H, et al. An anisotropic pore-network model to estimate the shale gas permeability[J]. Scientific Reports, 2021, 11(1): 7902.
[20] ZHANG P W, CELIA M A, BANDILLA K W, et al. A pore-network simulation model of dynamic CO2 migration in organic-rich shale formations[J]. Transport in Porous Media, 2020, 133(3): 479-496.
[21] LIN D T, HU L M, BRADFORD S A, et al. Simulation of colloid transport and retention using a pore-network model with roughness and chemical heterogeneity on pore surfaces[J]. Water Resources Research, 2021, 57(2): e2020WR028571.
[22] WANG Y H, YANG Y K, LIU T, et al. Pore-network model for multiscale analyses of battery thermal management systems[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(2): 170-176. (in Chinese) 王屹航, 杨元凯, 刘通, 等. 基于孔隙网络模型的电池热管理系统跨尺度分析[J]. 清华大学学报(自然科学版), 2021, 61(2): 170-176.
[23] BEAR J. Dynamics of fluids in porous media[M]. New York, USA: Elsevier, 1972.
[24] SHAO A J, LIU G M, YANG J S. In-lab determination of soil hydrodynamic dispersion coefficient[J]. Acta Pedologica Sinica, 2002, 39(2): 184-189. (in Chinese) 邵爱军, 刘广明, 杨劲松. 土壤水动力弥散系数的室内测定[J]. 土壤学报, 2002, 39(2): 184-189.
[25] LIN D T. Transport and retention of nano zero-valent iron in porous media[D]. Beijing: Tsinghua University, 2021. (in Chinese) 林丹彤. 纳米零价铁在多孔介质中的运移和滞留行为研究[D]. 北京: 清华大学, 2021.
[1] LI Shunyang, WAN Li, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Evaluation of leakage rates of static seals based on elastic-plastic contact theories and seepage theories[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1264-1272.
[2] CHEN Changkun, SHI Lang, BAO Yipeng, ZHANG Yulun. Experimental study on the characteristics of fire spread on porous sand bed infiltrated by high flash point liquid fuel[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1493-1501.
[3] Junwu YU,Rong HE,Yanguo ZHANG. Heat transfer characteristics of a fractal particle in a low Reynolds number flow[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 781-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd