Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (12) : 1953-1963     DOI: 10.16511/j.cnki.qhdxxb.2022.22.014
HYDRAULIC ENGINEERING |
Improved hillslope erosion module of the digital Yellow River integrated model considering the vegetation effects on the Loess Plateau
WANG Chenfeng, FU Xudong, ZHANG Ga, GONG Zheng, QIN Chao
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(5755 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Vegetation plays an important role in controlling hillslope erosion but how the vegetation controls the soil erosion is still not well understood. The interactions between the soil detachment capacity and the sediment transport capacity were modeled in a hillslope erosion model that integrates vegetation effects. Runoff plot data in typical watersheds on the Loess Plateau were used to validate the model with coefficients of determination values ranging from 0.84 to 0.94, Nash-Sutcliffe simulation efficiencies (NSE) ranging from 0.83 to 0.93 and relative errors ranging from -16.1% to 14.2% for various land uses. The original module in the digital Yellow River integrated model (DYRIM) had coefficients of determination ranging from 0.01 to 0.51 and NSE ranging from -74.45 to 0.48. Thus, the new model is more accurate for various land uses and vegetation types with the absolute values of the simulated sediment discharge rates reduced by 13%-96%. This model can be applied to the Loess Plateau and can be integrated into DYRIM and other distributed hydrological and sediment coupled models.
Keywords vegetation      land use      erosion model      soil detachment      sediment transport      Loess Plateau     
Issue Date: 10 November 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Chenfeng
FU Xudong
ZHANG Ga
GONG Zheng
QIN Chao
Cite this article:   
WANG Chenfeng,FU Xudong,ZHANG Ga, et al. Improved hillslope erosion module of the digital Yellow River integrated model considering the vegetation effects on the Loess Plateau[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1953-1963.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.22.014     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I12/1953
  
  
  
  
  
  
  
  
  
[1] WU G L, LIU Y F, CUI Z, et al. Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis[J]. Journal of Applied Ecology, 2020, 57(5): 875-885.
[2] LIU B Y, XIE Y, LI Z G, et al. The assessment of soil loss by water erosion in China[J]. International Soil and Water Conservation Research, 2020, 8(4): 430-439.
[3] WANG S X, LYU X Z, WEI Y C, et al. Runoff and sediment yields of different vegetation slopes in the gullied rolling loess area[J]. Soil and Water Conservation in China, 2021(3): 31-33, 9. (in Chinese) 王诗星, 吕锡芝, 魏义长, 等. 黄土丘陵沟壑区不同植被坡面产流产沙效应研究[J]. 中国水土保持, 2021(3): 31-33, 9.
[4] MO K L, CONG Z T. Water balance in a watershed considering the response of vegetation cover to rainfall changes[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(8): 851-856. (in Chinese) 莫康乐, 丛振涛. 考虑植被对降雨变化响应的流域水量平衡[J]. 清华大学学报(自然科学版), 2017, 57(8): 851-856.
[5] ZHU P Z, ZHANG G H, WANG H X, et al. Effectiveness of typical plant communities in controlling runoff and soil erosion on steep gully slopes on the Loess Plateau of China[J]. Journal of Hydrology, 2021, 602: 126714.
[6] MU H L, YU X J, FU S H, et al. Effect of stem cover on hydraulic parameters of overland flow[J]. Journal of Hydrology, 2019, 577: 123964.
[7] LI Z W, ZHANG G H, GENG R, et al. Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China[J]. CATENA, 2015, 124: 9-17.
[8] MU H L, YU X J, FU S H, et al. Effect of stem basal cover on the sediment transport capacity of overland flows[J]. Geoderma, 2019, 337: 384-393.
[9] DING L, FU S H. Effects of different types of undecomposed surface litter on the sediment transport capacity[J]. Geoderma, 2021, 385: 114842.
[10] DING L, FU S H, LIU B Y, et al. Effects of Pinus tabulaeformis litter cover on the sediment transport capacity of overland flow[J]. Soil and Tillage Research, 2020, 204: 104685.
[11] SUN Y, LIU X Y, TIAN Y, et al. Experimental study on the response characteristics of flow-sediment transport on slope to the vegetation coverage[J]. Journal of Basic Science and Engineering, 2020, 28(3): 632-641. (in Chinese) 孙一, 刘晓燕, 田勇, 等. 坡面水沙运动对植被覆盖度的响应特性试验研究[J]. 应用基础与工程科学学报, 2020, 28(3): 632-641.
[12] LAUFER D, LOIBL B, MÄRLÄNDER B, et al. Soil erosion and surface runoff under strip tillage for sugar beet (Beta vulgaris L. ) in Central Europe[J]. Soil and Tillage Research, 2016, 162: 1-7.
[13] JIANG Z S, WANG Z Q, LIU Z. Quantitative study on spatial variation of soil erosion in a small watershed in the loesa hilly region[J]. Journal of Soil Erosion and Soil Conservation, 1996, 2(1): 1-9. (in Chinese) 江忠善, 王志强, 刘志. 黄土丘陵区小流域土壤侵蚀空间变化定量研究[J]. 土壤侵蚀与水土保持学报, 1996, 2(1): 1-9.
[14] BORRELLI P, ROBINSON D A, PANAGOS P, et al. Land use and climate change impacts on global soil erosion by water (2015—2070)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(36): 21994-22001.
[15] ALEWELL C, BORRELLI P, MEUSBURGER K, et al. Using the USLE: Chances, challenges and limitations of soil erosion modelling[J]. International Soil and Water Conservation Research, 2019, 7(3): 203-225.
[16] FENG Q, ZHAO W W. The study on cover-management factor in USLE and RUSLE: A review[J]. Acta Ecologica Sinica, 2014, 34(16): 4461-4472. (in Chinese) 冯强, 赵文武. USLE/RUSLE中植被覆盖与管理因子研究进展[J]. 生态学报, 2014, 34(16): 4461-4472.
[17] SMETS T, POESEN J, BOCHET E. Impact of plot length on the effectiveness of different soil-surface covers in reducing runoff and soil loss by water[J]. Progress in Physical Geography: Earth and Environment, 2008, 32(6): 654-677.
[18] GUO D W, YU B F, FU X D, et al. Improved hillslope erosion module for the digital Yellow-River model[J]. Journal of Hydrologic Engineering, 2015, 20(6): C4014011.
[19] BORRELLI P, ALEWELL C, ALVAREZ P, et al. Soil erosion modelling: A global review and statistical analysis[J]. Science of the Total Environment, 2021, 780: 146494.
[20] ZHENG F L, ZHANG X C, WANG J X, et al. Assessing applicability of the WEPP hillslope model to steep landscapes in the northern Loess Plateau of China[J]. Soil and Tillage Research, 2020, 197: 104492.
[21] ZHANG G H. Several ideas related to soil erosion research[J]. Journal of Soil and Water Conservation, 2020, 34(4): 21-30. (in Chinese) 张光辉. 对土壤侵蚀研究的几点思考[J]. 水土保持学报, 2020, 34(4): 21-30.
[22] BORRELLI P, ROBINSON D A, FLEISCHER L R, et al. An assessment of the global impact of 21st century land use change on soil erosion[J]. Nature Communications, 2017, 8(1): 2013.
[23] CAI J Y, ZHOU Z H, LIU J J, et al. A three-process-based distributed soil erosion model at catchment scale on the Loess Plateau of China[J]. Journal of Hydrology, 2019, 578: 124005.
[24] SI W, BAO W M, JIANG P, et al. A semi-physical sediment yield model for estimation of suspended sediment in loess region[J]. International Journal of Sediment Research, 2017, 32(1): 12-19.
[25] YANG T, XU C Y, ZHANG Q, et al. DEM-based numerical modelling of runoff and soil erosion processes in the hilly-gully loess regions[J]. Stochastic Environmental Research and Risk Assessment, 2012, 26(4): 581-597.
[26] WANG G Q, LIU J H, LI T J. Digital watershed model of Yellow River[J]. Journal of Basic Science and Engineering, 2005, 13(1): 1-8. (in Chinese) 王光谦, 刘家宏, 李铁键. 黄河数字流域模型原理[J]. 应用基础与工程科学学报, 2005, 13(1): 1-8.
[27] YU B. A unified framework for water erosion and deposition equations[J]. Soil Science Society of America Journal, 2003, 67(1): 251-257.
[28] MU H L, FU S H, YU B F, et al. Predicting the sediment transport capacity from flow condition and particle size in the presence of vegetation cover[J]. Land Degradation & Development, 2021, 32(3): 1237-1249.
[29] ZHANG G H, LIU Y M, HAN Y F, et al. Sediment transport and soil detachment on steep slopes: I. Transport capacity estimation[J]. Soil Science Society of America Journal, 2009, 73(4): 1291-1297.
[30] WANG G Q, XUE H, LIU J H. Sediment yield model on slopes[J]. Journal of Basic Science and Engineering, 2005(S1): 1-7. (in Chinese) 王光谦, 薛海, 刘家宏. 坡面产沙理论模型[J]. 应用基础与工程科学学报, 2005(S1): 1-7.
[31] GAO H D, PANG G W, LI Z B, et al. Evaluating the potential of vegetation restoration in the Loess Plateau[J]. Acta Geographica Sinica, 2017, 72(5): 863-874. (in Chinese) 高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究[J]. 地理学报, 2017, 72(5): 863-874.
[32] WANG B J, LI E H, WANG Y J, et al. Spatial variations and the factors influencing daily and annual sediment rating curves in the middle Yellow River basin[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(5): 440-448. (in Chinese) 王冰洁, 李二辉, 王彦君, 等. 黄河中游日和年输沙率-流量关系空间变化及影响因素[J]. 清华大学学报(自然科学版), 2020, 60(5): 440-448.
[33] ZHANG J, WANG H J, ZHANG Y, et al. Variation of sediment load at the major tributaries in the middle reaches of Yellow River and its impacts on the sediment flux to the sea[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 21-30. (in Chinese) 张佳, 王厚杰, 张勇, 等. 黄河中游主要支流输沙量变化对黄河入海泥沙通量的影响[J]. 海洋地质与第四纪地质, 2012, 32(3): 21-30.
[34] Soil and Water Conservation Commission of the Middle Yellow River. Soil and water conservation data set of the middle Yellow River for year 1945 to year 1963 for the runoff plots parts of Tianshui, Xifeng and Suide[R]. Zhengzhou: Yellow River Conservancy Commission, 1965. (in Chinese) 黄河中游水土保持委员会. 1945年—1963年黄河中游水土保持径流测验资料: 天水、西峰、绥德站径流场部分[R]. 郑州: 黄河水利委员会, 1965.
[35] Soil and Water Conservation Bureau oF Shaanxi Province. Dataset of soil and water conservation and sediment runoff (1954—1976) of Shaanxi Province. Data sharing infrastructure of earth system science: Data sharing infrastructure of Loess Plateau[DB/OL]. 2008. http://loess.geodata.cn. (in Chinese) 陕西省水土保持局. 陕西省水土保持径流泥沙资料数据集(1954—1976年). 地球系统科学数据共享服务平台: 黄土高原科学数据共享平台[DB/OL]. 2008. http://loess.geodata.cn.
[36] YU Q G, WANG F G. Construction standardisation of soil and water conservation monitoring stations in Yellow River valley: Taking the monitoring stations/spots construction in Tianshui, Xifeng and Suide of YRCC as examples[J]. Bulletin of Soil and Water Conservation, 2009, 29(3): 220-224. (in Chinese) 喻权刚, 王富贵. 黄河水土保持监测站点标准化建设研究: 以黄委天水、西峰、绥德监测站点建设为例[J]. 水土保持通报, 2009, 29(3): 220-224.
[37] YANG X S, DEB S. Engineering optimisation by cuckoo search[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, 1(4): 330-343.
[38] WANG C F, WANG B, WANG Y Q, et al. Improved interrill erosion prediction by considering the impact of the near-surface hydraulic gradient[J]. Soil and Tillage Research, 2020, 203: 104687.
[39] LI E H, WANG B J, FU X D. Closure and validation of a SWAT model for daily scale sediment simulations[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(12): 975-980. (in Chinese) 李二辉, 王冰洁, 傅旭东. 面向逐日产沙模拟的SWAT模型封闭与检验[J]. 清华大学学报(自然科学版), 2019, 59(12): 975-980.
[40] AHMAD H M N, SINCLAIR A, JAMIESON R, et al. Modeling sediment and nitrogen export from a rural watershed in eastern Canada using the soil and water assessment tool[J]. Journal of Environmental Quality, 2011, 40(4): 1182-1194.
[41] LIU B Z, LIU S H, ZHENG S D. Soil conservation and coefficient of soil conservation of crops[J]. Research of Soil and Water Conservation, 1999, 6(2): 32-36, 113. (in Chinese) 刘秉正, 刘世海, 郑随定. 作物植被的保土作用及作用系数[J]. 水土保持研究, 1999, 6(2): 32-36, 113.
[42] ZHANG H J, HIKARU K, XIE M S, et al. Study on roughness coefficient under the conditions of several land utilization in the west of Shanxi province[J]. Journal of Beijing Forestry University, 1994, 16(S4): 86-92. (in Chinese) 张洪江, 北原曜, 解明曙, 等. 晋西几种不同土地利用状况下糙率系数的研究[J]. 北京林业大学学报, 1994, 16(S4): 86-92.
[43] SONG Y Q. The runoff and sediment regulation of grass covers in loess slopes[D]. Xianyang: Northwest A&F University, 2016. (in Chinese) 宋亚倩. 黄土坡面草被措施降雨径流调控效应试验研究[D]. 咸阳: 西北农林科技大学, 2016.
[44] WANG Z Y, WANG W L, TIAN S M. Mineral composition and distribution of the sediment in the Yellow River basin[J]. Journal of Sediment Research, 2007(5): 1-8. (in Chinese) 王兆印, 王文龙, 田世民. 黄河流域泥沙矿物成分与分布规律[J]. 泥沙研究, 2007(5): 1-8.
[45] CHENG N S. Simplified settling velocity formula for sediment particle[J]. Journal of Hydraulic Engineering, 1997, 123(2): 149-152.
[46] GUO D W. Improvement on the digital Yellow River model and the multi-scale characteristics of sediment yied[D]. Beijing: Tsinghua University, 2017. (in Chinese) 郭大卫. 数字流域模型改进及流域产沙多尺度机制[D]. 北京: 清华大学, 2017.
[47] MISRA R K, ROSE C W. Application and sensitivity analysis of process-based erosion model GUEST[J]. European Journal of Soil Science, 1996, 47(4): 593-604.
[48] ZHANG G H, LIU G B, TANG K M, et al. Flow detachment of soils under different land uses in the Loess Plateau of China[J]. Transactions of the ASABE, 2008, 51(3): 883-890.
[49] ZHANG G H, WANG L L, TANG K M, et al. Effects of sediment size on transport capacity of overland flow on steep slopes[J]. Hydrological Sciences Journal, 2011, 56(7): 1289-1299.
[50] HESSEL R, JETTEN V. Suitability of transport equations in modelling soil erosion for a small Loess Plateau catchment[J]. Engineering Geology, 2007, 91(1): 56-71.
[51] YALIN M S. An expression for bed-load transportation[J]. Journal of the Hydraulics Division, 1963, 89(3): 221-250.
[1] TANG Honglei, CHEN Ju, SHEN Chunying, ZHANG Ke, YAO Xinmei, RAN Qihua. Impacts of heterogeneity of saturated hydraulic conductivity on the shallow landslides on the Loess plateau[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 1946-1960.
[2] CHEN Ruoyu, ZHOU Jiangping. Understanding the scaling patterns of commuting in the Guangdong-Hong Kong-Macao Greater Bay Area with location-based service big data[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1195-1202.
[3] ZENG Xin, SUN Kai, WANG Chenfeng, AN Chenge, LEI Huimin, LI Peng, FU Xudong. Regulating effect of check dams on erosion dynamics and sediment transport during flooding[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1896-1905.
[4] LIU Jiahong, LIU Chuang, ZHOU Jinjun, SHAO Weiwei. Effects of urbanization and functional relief on evaporation in Beijing[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1964-1971.
[5] WANG Bingjie, LI Erhui, WANG Yanjun, ZHANG Shiyan, FU Xudong. Spatial variations and the factors influencing daily and annual sediment rating curves in the middle Yellow River basin[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 440-448.
[6] SONG Yuntian, ZENG Xin, ZHANG Yu, AN Chenge, MA Meihong, FU Xudong. Effect of sediment transport on the temporal and spatial characteristics of flash floods: A case study of “7.21” flood in Beijing[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 990-998.
[7] MO Kangle, CONG Zhentao. Water balance in a watershed considering the response of vegetation cover to rainfall changes[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 851-856.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd