Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (5) : 891-899     DOI: 10.16511/j.cnki.qhdxxb.2022.22.015
SPECIAL SECTION: ENERGY GEOSTRUCTURE AND ENGINEERING |
Heat transfer and thermal-mechanical coupling characteristics of an energy pile with groundwater seepage
YANG Weibo, YAN Chaoyi, ZHANG Laijun, WANG Feng
College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
Download: PDF(9321 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The effects of groundwater seepage on the heat transfer and thermo-mechanical coupling characteristics of an energy pile were analyzed using a coupled thermal-mechanical numerical model of the energy pile with seepage. The model shows how the groundwater seepage affects the thermodynamic properties of the energy pile during summer. The results show that in the summer mode the heat transfer of the energy pile with a horizontal seepage velocity of 60 m/a is 1.34 times larger than without seepage. The temperature rise in the pile is then reduced by 9.12%. The groundwater seepage reduces the variations of the pile body displacement, axial force, and the pile side friction while the energy pile rapidly becomes stable. In addition, the groundwater seepage reduces the effect of soil heat in the upstream seepage, but increases the influence of the soil heat in the downstream seepage.
Keywords ground source heat pump      energy pile      groundwater seepage      heat transfer      thermo-mechanical coupling characteristics     
Issue Date: 26 April 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Weibo
YAN Chaoyi
ZHANG Laijun
WANG Feng
Cite this article:   
YANG Weibo,YAN Chaoyi,ZHANG Laijun, et al. Heat transfer and thermal-mechanical coupling characteristics of an energy pile with groundwater seepage[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 891-899.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.22.015     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I5/891
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] ESEN M, YUKSEL T. Experimental evaluation of using various renewable energy sources for heating a greenhouse[J]. Energy and Buildings, 2013, 65:340-351.
[2] 杨卫波, 杨彬彬, 李晓金. 取放热不平衡条件下相变材料回填地埋管换热器传热特性研究[J]. 流体机械, 2021, 49(6):72-78. YANG W B, YANG B B, LI X J. Study on heat transfer characteristics of ground heat exchanger with PCM backfill under imbalance condition of heat absorption and release[J]. Fluid Machinery, 2021, 49(6):72-78. (in Chinese)
[3] LUO J, ZHAO H F, GUI S Q, et al. Study of thermal migration and induced mechanical effects in double U-tube energy piles[J]. Computers and Geotechnics, 2017, 91:1-11.
[4] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1):176-181. LIU H L, KONG G Q, WU H W. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1):176-181. (in Chinese)
[5] ZHANG W K, ZHANG L H, CUI P, et al. The influence of groundwater seepage on the performance of ground source heat pump system with energy pile[J]. Applied Thermal Engineering, 2019, 162:114217.
[6] ZHANG W K, YANG H X, FANG L, et al. Study on heat transfer of pile foundation ground heat exchanger with three-dimensional groundwater seepage[J]. International Journal of Heat and Mass Transfer, 2017, 105:58-66.
[7] PARK S, LEE S, LEE H, et al. Effect of borehole material on analytical solutions of the heat transfer model of ground heat exchangers considering groundwater flow[J]. Energies, 2016, 9(5):318.
[8] WANG W, REGUEIRO R A, MCCARTNEY J S. Coupled axisymmetric thermo-poro-mechanical finite element analysis of energy foundation centrifuge experiments in partially saturated silt[J]. Geotechnical and Geological Engineering, 2015, 33(2):373-388.
[9] HAN C J, YU X. Analyses of the thermo-hydro-mechanical responses of energy pile subjected to non-isothermal heat exchange condition[J]. Renewable Energy, 2020, 157:150-163.
[10] YANG W B, ZHANG L J, ZHANG H, et al. Numerical investigations of the effects of different factors on the displacement of energy pile under the thermo-mechanical loads[J]. Case Studies in Thermal Engineering, 2020, 21:100711.
[11] LOU Y, FANG P F, XIE X Y, et al. Numerical research on thermal response for geothermal energy pile groups under groundwater flow[J]. Geomechanics for Energy and the Environment, 2021, 28:100257.
[12] YOU S, CHENG X H, YU C L, et al. Effects of groundwater flow on the heat transfer performance of energy piles:Experimental and numerical analysis[J]. Energy and Buildings, 2017, 155:249-259.
[13] YOU T, YANG H X. Influences of different factors on the three-dimensional heat transfer of spiral-coil energy pile group with seepage[J]. International Journal of Low-Carbon Technologies, 2020, 15(3):458-470.
[14] CHEN F, MAO J F, CHEN S Y, et al. Efficiency analysis of utilizing phase change materials as grout for a vertical U-tube heat exchanger coupled ground source heat pump system[J]. Applied Thermal Engineering, 2018, 130:698-709.
[15] 张来军. 渗流场下能量桩换热及热-力耦合特性的理论和实验研究[D]. 扬州:扬州大学, 2021. ZHANG L J. Theoretical and experimental study on heat transfer and thermo-mechanical coupling characteristics of energy piles under seepage field[D]. Yangzhou:Yangzhou University, 2021. (in Chinese)
[16] FEI K, DAI D. Experimental and numerical study on the behavior of energy piles subjected to thermal cycles[J]. Advances in Civil Engineering, 2018, 2018:3424528.
[17] ANSYS. ANSYS fluent user's guide[R]. Canonsburg:ANSYS., 2013.
[1] LI Yu, WANG Xiangqin, MIN Jingchun. Numerical simulation of fuel flow and heat transfer in a serpentine tube considering the fuel variable properties[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 337-345.
[2] HU Yuwen, YAN Xiao, GONG Houjun, WANG Yanlin, ZHOU Lei. Numerical study on flow instability in parallel rectangular channels with coupled heat transfer[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1257-1263.
[3] LIU Qian, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Numerical simulation of saturated steam condensation heat exchange in a vertical channel[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1273-1281.
[4] HUANG Xiaoli, CHEN Zeliang, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Experimental study on pool boiling heat transfer enhancement in reduced graphene oxide nanofluid[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1291-1296.
[5] LI Dayu, ZHAO Kun, ZHOU Kuibin, SUN Penghui, WU Jinmo. Effects of the backboard on downward flame spread over polymethyl methacrylate[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 783-791.
[6] CAO Kai, LI Yayun, FU Ming, GUO Xian, LIU Xiaoyong, SONG Yuhan. Assessment of the heat transfer characteristics and cooling performance of firefighter cooling vests using thermal manikins[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1548-1557.
[7] LIU Zibiao, LIN Junjiang, LI Hexin, HUANG Tianjiao, XU Wenbin, ZHUANG Yijie. Heat transfer in porous medium composite phase change materials with battery heat generation[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1037-1043.
[8] CUI Hongzhi, LI Haixing, BAO Xiaohua, QI Xuedong, SHI Jiaxin, XIAO Xiong. Measured thermal characteristics of a phase change energy pile in unsaturated clay[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 881-890.
[9] HUANG Xiaoli, CHEN Zeliang, GUI Nan, GONG Houjun, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Review of graphene enhanced boiling heat transfer[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1681-1690.
[10] WEN Rongfu, DU Bingang, YANG Siyan, LIU Yuanbo, LI Qixun, CHENG Yaqi, LAN Zhong, MA Xuehu. Advances in condensation heat transfer enhancement[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1353-1370.
[11] GU Junping, LIU Qi, WU Yuxin, WANG Qinggong, LYU Junfu. Heat transfer correlation for subcooled flow boiling of saline solutions[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1397-1404.
[12] CUI Hongzhi, ZOU Jinping, BAO Xiaohua, QI Xuedong, QI He. Heat exchange behavior of the phase change energy pile under cooling condition[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 715-725.
[13] WANG Yanran, KONG Gangqiang, SHEN Yang, SUN Zhiwen, WANG Xinyue, XIAO Hanyu. Field tests of the thermal-mechanical characteristics of energy piles during thermal interactions[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 733-739.
[14] WU Jinchao, QIU Shihan, LI Muheng, WEI Xing, CHEN Bingyao, YING Kui. Kalman filtering and bio-heat transfer model based real-time MR temperature imaging for increased accuracy[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 334-340.
[15] HUANG Teng, LI Xuefang, CHRISTOPHER D M, BA Qingxin, CHENG Lin. Numerical study of the flow and heat transfer of supercritical CO2 flowing in various vertical serpentine tubes[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 263-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd