Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (6) : 1037-1043     DOI: 10.16511/j.cnki.qhdxxb.2022.22.016
SPECIAL ISSUE: PUBLIC SAFETY |
Heat transfer in porous medium composite phase change materials with battery heat generation
LIU Zibiao, LIN Junjiang, LI Hexin, HUANG Tianjiao, XU Wenbin, ZHUANG Yijie
Department of Safety Engineering, Guangdong University of Technology, Guangzhou 510006, China
Download: PDF(5718 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  New energy vehicles are mainly powered by high energy density batteries that can experience thermal safety issues that have received extensive attention from researchers. The battery thermal management system is designed to prevent thermal runaway in the batteries. This paper presents a coupled heat transfer and battery heat generation study using porous medium composite phase change materials (CPCM) for battery thermal management. The study uses numerical models and experiments with particle image velocimetry (PIV) to research the heat generation in lithium-ion batteries in the porous composite phase change unit and the heat transfer in the composite phase change materials. The results show that the porous media accelerate melting of the phase change materials (PCM), composite phase change materials can slow the battery temperature increase and the current intensity can significantly impact the melting process, energy storage and energy storage efficiency of the thermal management system. Thus, the composite phase change material improves the heat dissipation in the battery which slows the temperature increase. Dual-battery models should have a space between the batteries to improve the heat dissipation for the thermal management system.
Keywords composite phase change material      metal foam      battery heat generation      heat transfer     
Issue Date: 06 May 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Zibiao
LIN Junjiang
LI Hexin
HUANG Tianjiao
XU Wenbin
ZHUANG Yijie
Cite this article:   
LIU Zibiao,LIN Junjiang,LI Hexin, et al. Heat transfer in porous medium composite phase change materials with battery heat generation[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1037-1043.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.22.016     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I6/1037
  
  
  
  
  
  
  
  
  
[1] FENG X N, LU L G, OUYANG M G, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115:194-208.
[2] WEN J P, ZHAO D, ZHANG C W. An overview of electricity powered vehicles:Lithium-ion battery energy storage density and energy conversion efficiency[J]. Renewable Energy, 2020, 162:1629-1648.
[3] 张国庆, 饶中浩, 吴忠杰, 等. 采用相变材料冷却的动力电池组的散热性能[J]. 化工进展, 2009, 28(1):23-26, 40. ZHANG G Q, RAO Z H, WU Z J, et al. Experimental investigation on the heat dissipation effect of power battery pack cooled with phase change materials[J]. Chemical Industry and Engineering, 2009, 28(1):23-26, 40. (in Chinese)
[4] 饶中浩, 汪双凤, 洪思慧, 等. 电动汽车动力电池热管理实验与数值分析[J]. 工程热物理学报, 2013, 34(6):1157-1160. RAO Z H, WANG S F, HONG S H, et al. Experimental and numerical study on the power battery thermal management of electric vehicle[J]. Journal of Engineering Thermophysics, 2013, 34(6):1157-1160. (in Chinese)
[5] 凌子夜, 方晓明, 汪双凤, 等. 相变材料用于锂离子电池热管理系统的研究进展[J]. 储能科学与技术, 2013, 2(5):451-459. LING Z Y, FANG X M, WANG S F, et al. Thermal management of lithium-ion batteries using phase change materials[J]. Energy Storage Science and Technology, 2013, 2(5):451-459. (in Chinese)
[6] 张国庆, 张海燕. 相变储能材料在电池热管理系统中的应用研究进展[J]. 材料导报, 2006, 20(8):9-12. ZHANG G Q, ZHANG H Y. Progress in application of phase change materials in battery module thermal management system[J]. Materials Review, 2006, 20(8):9-12. (in Chinese)
[7] MAT S, AL-ABIDI A A, SOPIAN K, et al. Enhance heat transfer for PCM melting in triplex tube with internal-external fins[J]. Energy Conversion and Management, 2013, 74:223-236.
[8] PRASANTH N, SHARMA M, YADAV R N, et al. Designing of latent heat thermal energy storage systems using metal porous structures for storing solar energy[J]. Journal of Energy Storage, 2020, 32:101990.
[9] ZHUANG Y J, LIU Z B, XU W B. Experimental investigation on the non-Newtonian to Newtonian rheology transition of nanoparticles enhanced phase change material during melting[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 629:127432.
[10] FADEN M, LINHARDT C, HOHLEIN S, et al. Velocity field and phase boundary measurements during melting of n-octadecane in a cubical test cell[J]. International Journal of Heat and Mass Transfer, 2019, 135:104-114.
[11] ZHENG H P, WANG C H, LIU Q M, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157:372-381.
[12] YANG X H, BAI Q S, GUO Z X, et al. Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage[J]. Applied Energy, 2018, 229:700-714.
[13] CALMIDI V V. Transport phenomena in high porosity fibrous metal foams[D]. Boulder, USA:University of Colorado, 1998.
[14] CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3):557-565.
[15] FOURIE J G, DU PLESSIS J P. Pressure drop modelling in cellular metallic foams[J]. Chemical Engineering Science, 2002, 57(14):2781-2789.
[16] NIELD D A, BEJAN A. Convection in porous media[M]. 3rd ed. New York, USA:Springer, 2006.
[17] ZHANG P, MENG Z N, ZHU H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185:1971-1983.
[18] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1):5-12.
[19] CHEN F F, HUANG R, WANG C M, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering, 2020, 173:115154.
[20] 洪文华. 相变材料在锂离子动力电池热管理中的应用研究[D]. 杭州:浙江大学, 2019. HONG W H. Application of phase change material in thermal management of lithium ion power battery[D]. Hangzhou:Zhejiang University, 2019. (in Chinese)
[21] VENKATA B, DINESH S, BHATTACHARYA A. Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems[J]. International Journal of Heat and Mass Transfer, 2019, 134:866-883.
[22] ZHU F, ZHANG C, GONG X L. Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity[J]. Applied Thermal Engineering, 2017, 123:256-265.
[23] PU L, ZHANG S Q, XU L L, et al. Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam[J]. Renewable Energy, 2021, 174:573-589.
[24] PATANKAR S V, SPALDING D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10):1787-1806.
[25] ZHANG X C, SU G K, LIN J J, et al. Three-dimensional numerical investigation on melting performance of phase change material composited with copper foam in local thermal non-equilibrium containing an internal heater[J]. International Journal of Heat and Mass Transfer, 2021, 170:121021.
[1] LI Yu, WANG Xiangqin, MIN Jingchun. Numerical simulation of fuel flow and heat transfer in a serpentine tube considering the fuel variable properties[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 337-345.
[2] HU Yuwen, YAN Xiao, GONG Houjun, WANG Yanlin, ZHOU Lei. Numerical study on flow instability in parallel rectangular channels with coupled heat transfer[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1257-1263.
[3] LIU Qian, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Numerical simulation of saturated steam condensation heat exchange in a vertical channel[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1273-1281.
[4] HUANG Xiaoli, CHEN Zeliang, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Experimental study on pool boiling heat transfer enhancement in reduced graphene oxide nanofluid[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1291-1296.
[5] LI Dayu, ZHAO Kun, ZHOU Kuibin, SUN Penghui, WU Jinmo. Effects of the backboard on downward flame spread over polymethyl methacrylate[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 783-791.
[6] CAO Kai, LI Yayun, FU Ming, GUO Xian, LIU Xiaoyong, SONG Yuhan. Assessment of the heat transfer characteristics and cooling performance of firefighter cooling vests using thermal manikins[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1548-1557.
[7] YANG Weibo, YAN Chaoyi, ZHANG Laijun, WANG Feng. Heat transfer and thermal-mechanical coupling characteristics of an energy pile with groundwater seepage[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 891-899.
[8] HUANG Xiaoli, CHEN Zeliang, GUI Nan, GONG Houjun, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Review of graphene enhanced boiling heat transfer[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1681-1690.
[9] WEN Rongfu, DU Bingang, YANG Siyan, LIU Yuanbo, LI Qixun, CHENG Yaqi, LAN Zhong, MA Xuehu. Advances in condensation heat transfer enhancement[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1353-1370.
[10] GU Junping, LIU Qi, WU Yuxin, WANG Qinggong, LYU Junfu. Heat transfer correlation for subcooled flow boiling of saline solutions[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1397-1404.
[11] CUI Hongzhi, ZOU Jinping, BAO Xiaohua, QI Xuedong, QI He. Heat exchange behavior of the phase change energy pile under cooling condition[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 715-725.
[12] WANG Yanran, KONG Gangqiang, SHEN Yang, SUN Zhiwen, WANG Xinyue, XIAO Hanyu. Field tests of the thermal-mechanical characteristics of energy piles during thermal interactions[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 733-739.
[13] WU Jinchao, QIU Shihan, LI Muheng, WEI Xing, CHEN Bingyao, YING Kui. Kalman filtering and bio-heat transfer model based real-time MR temperature imaging for increased accuracy[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(4): 334-340.
[14] HUANG Teng, LI Xuefang, CHRISTOPHER D M, BA Qingxin, CHENG Lin. Numerical study of the flow and heat transfer of supercritical CO2 flowing in various vertical serpentine tubes[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 263-270.
[15] WANG Zhenchuan, XU Ruina, XIONG Chao, JIANG Peixue. Experimental study on the inhibition of heat transfer deterioration of supercritical pressure CO2[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(12): 1101-1106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd