Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2023, Vol. 63 Issue (1) : 94-103     DOI: 10.16511/j.cnki.qhdxxb.2022.22.041
ELECTRICAL ENGINEERING |
Loss analyses of multi-port power electronic transformers based on DSIM simulations
FAN Zhiqiang, ZHAO Zhengming, SHI Bochen, YU Zhujun, ZHENG Jialin
Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(5016 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Multi-port power electronic transformers (PET) are key parts of modern power grids, but their losses are difficult to model. DSIM simulations are useful for complex power electronic converters, especially PET simulations. This study analyzed the losses in a multi-port PET which showed the effectiveness of DSIM software for analyzing complex power electronic converter systems. This paper described the PET loss model which was then validated by simulations and experiments. The results show the optimum efficiency operating point of a single PET. When two PETs are available, one PET in operation is the most efficient for light loads and two PETs in operation are the most efficient for heavy loads. This loss model analysis provides a reference for optimizing the efficiency of PET operations.
Keywords power electronic transformer      loss analysis      power electronic simulations with DSIM      power grid     
Issue Date: 11 January 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Zhiqiang
ZHAO Zhengming
SHI Bochen
YU Zhujun
ZHENG Jialin
Cite this article:   
FAN Zhiqiang,ZHAO Zhengming,SHI Bochen, et al. Loss analyses of multi-port power electronic transformers based on DSIM simulations[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 94-103.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.22.041     OR     http://jst.tsinghuajournals.com/EN/Y2023/V63/I1/94
  
  
  
  
  
  
  
  
[1] ZHANG J P, LIU J Q, YANG J X, et al. A modified DC power electronic transformer based on series connection of full-bridge converters[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2119-2133.
[2] PENG Z R, WANG G S, ZHAI X F, et al. Optimum design of high frequency transformer based on winding spacing[C]// 201922nd International Conference on Electrical Machines and Systems (ICEMS). Harbin, China, 2019: 1-6.
[3] LIU B, WU W H, ZHOU C X, et al. An AC-DC hybrid multi-port energy router with coordinated control and energy management strategies[J]. IEEE Access, 2019, 7: 109069-109082.
[4] SHEN Y, ZHU F J, ZHANG C P, et al. Steady-state model of multi-port electric energy router and power flow analysis method of AC/DC hybrid system considering control strategies[J]. The Journal of Engineering, 2019, 2019(16): 2794-2799.
[5] BOLTE S, FRÖHLEKE N, BÖCKER J. DC-DC converter design for power distribution systems in electric vehicles using calorimetric loss measurements[C]// 201618th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). Karlsruhe, Germany, 2016: 1-7.
[6] SADIGH A K, DARGAHI V, CORZINE K A. Analytical determination of conduction and switching power losses in flying-capacitor-based active neutral-point-clamped multilevel converter[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5473-5494.
[7] ABRAHAM Y H, XIAO W Q, WEN H Q, et al. Estimating power losses in dual active bridge DC-DC converter[C]// 20112nd International Conference on Electric Power and Energy Conversion Systems (EPECS). Sharjah, United Arab Emirates, 2011.
[8] XU X X, TAI N L, HU Y, et al. Study on optimal operation of multi-port cascaded power electronic transformer cluster[C]// 2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing, China, 2019.
[9] WANG S K, LIU J J, LIU Z, et al. A hierarchical operation strategy of parallel inverters for efficiency improvement and voltage stabilization in microgrids[C]// 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). Auckland, New Zealand, 2016.
[10] SOLTAU N, EGGERS D, HAMEYER K, et al. Iron losses in a medium-frequency transformer operated in a high-power DC-DC converter[J]. IEEE Transactions on Magnetics, 2014, 50(2): 7023604.
[11] SHI B C, ZHAO Z M, JU J H, et al. Switching transient simulation and system efficiency evaluation of megawatt power electronics converter with discrete state event-driven approach[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 2180-2190.
[12] SHI B C, CHEN Y L, CHEN K N, et al. Event-driven approach with time-scale hierarchical automaton for switching transient simulation of SiC-based high-frequency converter[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(11): 4746-4759.
[13] SHI B C, JI S Q, ZHAO Z M, et al. Discrete-state event-driven numerical prototyping of megawatt solid-state transformers and AC/DC hybrid microgrids[J]. IEEE Access, 2021, 9: 108329-108339.
[14] SHI B C, ZHAO Z M, ZHU Y C, et al. Time-domain and frequency-domain analysis of SiC MOSFET switching transients considering transmission of control, drive, and power pulses[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(5): 6441-6452.
[15] SHI B C, ZHAO Z M, ZHU Y C, et al. Discrete state event-driven simulation approach with a state-variable- interfaced decoupling strategy for large-scale power electronics systems[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 11673-11683.
[16] SHI B C, ZHAO Z M, ZHU Y C. Piecewise analytical transient model for power switching device commutation unit[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5720-5736.
[17] 施博辰, 赵争鸣, 朱义诚, 等. 电力电子混杂系统多时间尺度离散状态事件驱动仿真方法[J]. 中国电机工程学报, 2021, 41(9): 2980-2989. SHI B C, ZHAO Z M, ZHU Y C, et al. Discrete-state event-driven simulation approach for multi-time-scale power electronic hybrid system[J]. Proceedings of the CSEE, 2021, 41(9): 2980-2989. (in Chinese)
[18] 施博辰, 赵争鸣, 朱义诚, 等. 离散状态事件驱动仿真方法在高压大容量电力电子变换系统中的应用[J]. 高电压技术, 2019, 45(7): 2053-2061. SHI B C, ZHAO Z M, ZHU Y C, et al. Application of discrete state event-driven simulation framework in high-voltage power electronic hybrid systems[J]. High Voltage Engineering, 2019, 45(7): 2053-2061. (in Chinese)
[19] 文武松, 赵争鸣, 莫昕, 等. 基于高频汇集母线的电能路由器能量自循环系统及功率协同控制策略[J]. 电工技术学报, 2020, 35(11): 2328-2338. WEN W S, ZHAO Z M, MO X, et al. Energy self-circulation scheme and power coordinated control of high-frequency-bus based electric energy router[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2328-2338. (in Chinese)
[20] 文武松, 赵争鸣, 袁立强, 等. 电能路由器公共高频母线超瞬态过程机理及抑制措施[J]. 中国电机工程学报, 2021, 41(15): 5283-5293. WEN W S, ZHAO Z M, YUAN L Q, et al. Mechanism and suppression strategy of the ultra-transient behavior of high-frequency-bus in electric energy router[J]. Proceedings of the CSEE, 2021, 41(15): 5283-5293. (in Chinese)
[21] 蔡伟谦, 沈瑜, 李凯, 等. 共高频交流母线的电能路由器直流端口控制策略[J]. 电网技术, 2020, 44(12): 4600-4607. CAI W Q, SHEN Y, LI K, et al. DC port control strategy for electric energy router with high frequency AC link[J]. Power System Technology, 2020, 44(12): 4600-4607. (in Chinese)
[22] YUE Q Y, LI C B, CAO Y J, et al. Comprehensive power losses model for electronic power transformer[J]. IEEE Access, 2018, 6: 14926-14934.
[23] ZHENG J L, ZHAO Z M, SHI B C, et al. A discrete state event driven simulation based losses analysis for multi-terminal megawatt power electronic transformer[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 275-284.
[24] 岳全有. 电子电力变压器的综合损耗分析模型及其应用[D]. 长沙: 湖南大学. YUE Q Y. Comprehensive power losses model for electronic power transformer and its application[D]. Changsha, China: Hunan University. (in Chinese)
[1] SONG Guobing, ZHANG Yuxuan, ZHANG Chenhao, HOU Junjie, XU Ruidong. Converter station transmission characteristics for protecting hybrid AC/DC power grids[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 465-477.
[2] NIE Haozhe, SHEN Yu, ZHAO Zhengming, WEN Wusong, YUAN Liqiang. Low voltage ride through function for the high voltage AC ports of four-port power electronic transformers[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1097-1105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd