Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (3) : 400-407     DOI: 10.16511/j.cnki.qhdxxb.2022.25.007
MECHANICAL ENGINEERING |
Thermofluid modeling for concurrent size-topology optimization of heat sinks for planar motors
ZHAO Jiaqi, ZHANG Ming, ZHU Yu, CHENG Rong, LI Xin, WANG Leijie, HU Chuxiong
Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(3884 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The thermal-hydraulics of water-cooled heat sinks for planar motors were analyzed using a thermofluid model of a heat sink to concurrently optimize the heat sink size and topology. The three-layer thermofluid model of the heat sink included the coupled flow and heat transfer effects between the cover plates and the fluid-solid mixing channel including the influence of the flow channel thickness on the thermal-hydraulics. The model used a porosity model to describe the channel topology and a continuous-adjoint structural optimization model for the geometric variables related to the channel topology and thickness in a concurrent size-topology optimization scheme. Various numerical examples show the accuracy and efficiency of the three-layer thermofluid model and the size-topology optimization scheme. The three-layer model uses 10% less calculational time than full 3D models while still accurately predicting the temperature distribution. The optimized heat sinks have unique topologies with up to 30.82% better heat transfer than baseline designs. This concurrent approach is efficient and obtains designs that are competitive with discrete optimization approach results.
Keywords heat sink      thermofluid modeling      multi-layer model      topology optimization      size optimization      concurrent optimization     
Issue Date: 10 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Jiaqi
ZHANG Ming
ZHU Yu
CHENG Rong
LI Xin
WANG Leijie
HU Chuxiong
Cite this article:   
ZHAO Jiaqi,ZHANG Ming,ZHU Yu, et al. Thermofluid modeling for concurrent size-topology optimization of heat sinks for planar motors[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 400-407.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.25.007     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I3/400
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics[J]. Materials Today, 2014, 17(4):163-174.
[2] 袁丁. 多自由度无铁芯永磁式平面电机的建模与设计方法研究[D]. 北京:清华大学, 2019.YUAN D. Modeling and design method for multi-DOF ironless permanent magnet planar motor[D]. Beijing:Tsinghua University, 2019. (in Chinese)
[3] 曹家勇, 朱煜, 汪劲松, 等. 平面电动机设计、控制与应用技术综述[J]. 电工技术学报, 2005, 20(4):1-8.CAO J Y, ZHU Y, WANG J S, et al. Survey of the state of the art in planar motor technology[J]. Transactions of China Electrotechnical Society, 2005, 20(4):1-8. (in Chinese)
[4] ZHANG M, XU Q M, CHENG R, et al. Radiator optimization design for planar motors based on parametric components[J]. Journal of Beijing Institute of Technology, 2020, 29(2):222-231.
[5] AHMED H E, SALMAN B H, KHERBEET A S, et al. Optimization of thermal design of heat sinks:A review[J]. International Journal of Heat and Mass Transfer, 2018, 118:129-153.
[6] WANG L K, MANGLIK R M, SUNDÉN B. Plate heat exchangers:Design, applications and performance[M]. Boston:WIT Press, 2007.
[7] DEDE E M. Multiphysics topology optimization of heat transfer and fluid flow systems[C]//Proceedings of the COMSOL Conference. Boston, USA:COMSOL, 2009.
[8] ALEXANDERSEN J, ANDREASEN C S. A review of topology optimisation for fluid-based problems[J]. Fluids, 2020, 5(1):29.
[9] DBOUK T. A review about the engineering design of optimal heat transfer systems using topology optimization[J]. Applied Thermal Engineering, 2017, 112:841-854.
[10] HAERTEL J H K, ENGELBRECHT K, LAZAROV B S, et al. Topology optimization of a pseudo 3D thermofluid heat sink model[J]. International Journal of Heat and Mass Transfer, 2018, 121:1073-1088.
[11] ZENG T, WANG H, YANG M Z, et al. Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid model[J]. International Journal of Heat and Mass Transfer, 2020, 154:119681.
[12] YAN S N, WANG F W, HONG J, et al. Topology optimization of microchannel heat sinks using a two-layer model[J]. International Journal of Heat and Mass Transfer, 2019, 143:118462.
[13] ZENG S, KANARGI B, LEE P S. Experimental and numerical investigation of a mini channel forced air heat sink designed by topology optimization[J]. International Journal of Heat and Mass Transfer, 2018, 121:663-679.
[14] ZHAO J Q, ZHANG M, ZHU Y, et al. Topology optimization of planar cooling channels using a three-layer thermofluid model in fully developed laminar flow problems[J]. Structural and Multidisciplinary Optimization, 2021, 63(6):2789-2809.
[15] ZHAO J Q, ZHANG M, ZHU Y, et al. Concurrent optimization of the internal flow channel, inlets, and outlets in forced convection heat sinks[J]. Structural and Multidisciplinary Optimization, 2021, 63(1):121-136.
[16] ZHAO J Q, ZHANG M, ZHU Y, et al. Concurrent optimization of additive manufacturing fabricated lattice structures for natural frequencies[J]. International Journal of Mechanical Sciences, 2019, 163:105153.
[17] WELTY J R, WICKS C E, WILSON R E, et al. Fundamentals of momentum, heat, and mass transfer[M]. 5th ed. Hoboken:John Wiley & Sons, 2008.
[18] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6):765-781.
[19] WANG F W, LAZAROV B S, SIGMUND O. On projection methods, convergence and robust formulations in topology optimization[J]. Structural and Multidisciplinary Optimization, 2011, 43(6):767-784.
[20] SVANBERG K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
[1] ZHANG Qingsong, JIA Shan, CHEN Jinbao, XU Yingshan, SHE Zhiyong, CAI Chengzhi, PAN Yihua. Configuration design and topology optimization of a single wing for the hybrid unmanned aerial vehicle[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 423-432.
[2] Fazhong PENG,Chuanying WANG,Henghui CHAI,Zhufeng SHAO,Shuaiqi WANG,Bowen WANG. Lightweight slider design for a servo press based on its layered structure[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(12): 1016-1022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd