Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (8) : 1321-1329     DOI: 10.16511/j.cnki.qhdxxb.2022.25.028
Intelligent Prediction and Feedback |
GA-BP artificial neural networks for predicting the seismic response of arch dams
YU Jingchi1, JIN Aiyun2, PAN Jianwen1, WANG Jinting1, ZHANG Chuhan1
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. SINOHYDRO BUREAU 9 Co., LTD., Guiyang 550081, China
Download: PDF(12383 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Arch dams may be subjected to strong earthquakes during their lifecycle and their seismic response has attracted extensive attention in dam engineering. Nonlinear finite element seismic response analyses of arch dams require large amounts of computational effort. This paper presents a back propagation (BP) genetic algorithm (GA) method for predict the seismic responses of arch dams which replaces some of the finite element analysis calculations and significantly reduces the computational cost compared with the finite element method. A BP neural network was trained and validated for the Dagangshan arch dam based on 390 nonlinear dynamic response cases calculated using the finite element method with the structural response as the BP neural network output and the seismic intensity parameter, IM, as the input. The results show that the GA-BP neural network can properly predict the dam seismic response and give reasonable seismic response curves using 30% of the 390 cases for training which shows that the GA-BP neural network can save 70% of the nonlinear finite element cost.
Keywords arch dam      seismic fragility analysis      artificial neural network      genetic algorithm     
Just Accepted Date: 31 March 2022   Issue Date: 31 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Jingchi
JIN Aiyun
PAN Jianwen
WANG Jinting
ZHANG Chuhan
Cite this article:   
YU Jingchi,JIN Aiyun,PAN Jianwen, et al. GA-BP artificial neural networks for predicting the seismic response of arch dams[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1321-1329.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.25.028     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I8/1321
  
  
  
  
  
  
  
  
  
[1] CHEN H J, XU W Y, WU Q X, et al. Reliability analysis of arch dam subjected to seismic loads[J]. Arabian Journal for Science and Engineering, 2014, 39(11):7609-7619.
[2] YAO X W, ELNASHAI A S, JIANG J Q. Analytical seismic fragility analysis of concrete arch dams[C]//Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal:WCEE, 2012.
[3] WANG J T, ZHANG M X, JIN A Y, et al. Seismic fragility of arch dams based on damage analysis[J]. Soil Dynamics and Earthquake Engineering, 2018, 109:58-68.
[4] ANDERSON D, MCNEILL G. Artificial neural networks technology[R]. New York:Data & Analysis Center for Software, 1992.
[5] LIU K, GUO W Y, SHEN X L, et al. Research on the forecast model of electricity power industry loan based on GA-BP neural network[J]. Energy Procedia, 2012, 14:1918-1924.
[6] FENG G L, LI L. Application of genetic algorithm and neural network in construction cost estimate[C]//Proceedings of the 2012 2nd International Conference on Computer and Information Application. Paris, France:Atlantis Press, 2012:1036-1039.
[7] 余功栓. 人工智能技术在大坝安全分析中的应用[D]. 杭州:浙江大学, 2004. YU G S. Application of artificial intelligent in safety analysis of embankment[D]. Hangzhou:Zhejiang University, 2004. (in Chinese)
[8] DING S F, SU C Y, YU J Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2):153-162.
[9] MATA J. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models[J]. Engineering Structures, 2011, 33(3):903-910.
[10] SONG L F, XU B, KONG X J, et al. Reliability analysis of 3D rockfill dam slope stability based on the Copula function[J]. International Journal of Geomechanics, 2021, 21(3):04021001.
[11] LIU J, WANG G Y, CHEN Y. Research and application of GA neural network model on dam displacement forecasting[C]//11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach, California, USA:ASCE, 2008, 323:1-9.
[12] 苏怀智, 吴中如, 温志萍, 等. 遗传算法在大坝安全监控神经网络预报模型建立中的应用[J]. 水利学报, 2001(8):44-48. SU H Z, WU Z R, WEN Z P, et al. The application of genetic algorithm in establishment of neural network forecast model for dam safety monitoring[J]. Journal of Hydraulic Engineering, 2001(8):44-48. (in Chinese)
[13] MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4):115-133.
[14] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8):2554-2558.
[15] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[16] 刘春艳, 凌建春, 蔻林元, 等. GA-BP神经网络与BP神经网络性能比较[J]. 中国卫生统计, 2013, 30(2):173-176, 181. LIU C Y, LING J C, KOU L Y, et al. Performance comparison between GA-BP neural network and BP neural network[J]. Chinese Journal of Health Statistics, 2013, 30(2):173-176, 181. (in Chinese)
[17] 金爱云. 高拱坝地震易损性研究[D]. 北京:清华大学, 2020. JIN A Y. Seismic fragility analysis of high arch dams[D]. Beijing:Tsinghua University, 2020. (in Chinese)
[18] TOTHONG P, LUCO N. Probabilistic seismic demand analysis using advanced ground motion intensity measures[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13):1837-1860.
[19] HARIRI-ARDEBILI M A, SAOUMA V E. Probabilistic seismic demand model and optimal intensity measure for concrete dams[J]. Structural Safety, 2016, 59:67-85.
[20] ARIAS A. A measure of earthquake intensity[M]//HANSEN R J. Seismic Design for Nuclear Power Plants. Cambridge, MA, USA:MIT Press, 1970:438-483.
[21] 崔恩文. 基于速度谱强度高铁列车地震报警阈值研究[D]. 哈尔滨:中国地震局工程力学研究所, 2014. CUI E W. Study on spectral intensity of speed based earthquake alarm threshold of high speed trains[D]. Harbin:China Earthquake Administration, 2014. (in Chinese)
[22] YANG D X, PAN J W, LI G. Non-structure-specific intensity measure parameters and characteristic period of near-fault ground motions[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(11):1257-1280.
[23] ZHANG C H, JIN F, WANG J T, et al. Nonlinear behavior and seismic safety evaluation of concrete dams[M]. Beijing:Tsinghua University Press, 2012.
[24] 潘坚文, 王进廷, 张楚汉. 超强地震作用下拱坝的损伤开裂分析[J]. 水利学报, 2007, 38(2):143-149. PAN J W, WANG J T, ZHANG C H. Analysis of damage and cracking in arch dams subjected to extremely strong earthquake[J]. Journal of Hydraulic Engineering, 2007, 38(2):143-149. (in Chinese)
[25] LIU J B, LI B. A unified viscous-spring artificial boundary for 3-D static and dynamic applications[J]. Science in China Series E-Engineering & Materials Science, 2005, 48(5):570-584.
[26] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[27] 潘坚文. 高混凝土坝静动力非线性断裂与地基辐射阻尼模拟研究[D]. 北京:清华大学, 2010. PAN J W. Nonlinear static and seismic fracture analysis of high concrete dams and modeling of radiation damping for foundation[D]. Beijing:Tsinghua University, 2010. (in Chinese)
[28] SHOME N, CORNELL C A. Probabilistic seismic demand analysis of nonlinear structures[D]. Stanford:Stanford University, 1999.
[29] 吕大刚, 于晓辉, 潘峰, 等. 基于改进云图法的结构概率地震需求分析[J]. 世界地震工程, 2010, 26(1):7-15. LÜ D G, YU X H, PAN F, et al. Probabilistic seismic demand analysis of structures based on an improved cloud method[J]. World Earthquake and Engineering, 2010, 26(1):7-15. (in Chinese)
[1] HUANG Ailing, WANG Zijian, ZHANG Zhe, LI Mingjie, SONG Yue. Capacity-matching model of landside multiple transport modes for large airports considering the impact of carbon emissions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1729-1740.
[2] DAI Xin, CHEN Jushi, CHEN Tao, HUANG Hong, LI Zhipeng, YU Shuiping. Multi-objective optimization method and case analysis for emergency drainage of pumped storage power station[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1558-1565.
[3] ZHUANG Wenyu, ZHANG Rujiu, XU Jianjun, YIN Liang, WEI Haining, LIU Yaoru. Inversion analysis to determine the mechanical parameters of a high arch dam and its foundation based on an IAGA-BP algorithm[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1302-1313.
[4] WANG Xingwang, LIU Yaoru, LÜ Shuai, YANG Qiang. Relationship between reservoir bank deformation and reservoir-induced earthquakes during the impounding of high arch dams[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1341-1350.
[5] ZHOU Wei, LI Min, QIU Mingjun, ZHANG Xilong, LIU Jiang, ZHANG Hongbo. Vehicle body panel thickness optimization by a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 523-532.
[6] TAN Yaosheng, CHEN Wenfu, LIN Ende, LIN Peng, ZHOU Tiangang, ZHOU Mengxia, LIU Chunfeng, PEI Lei, LIANG Cheng, SHANG Chao, YANG Pengbo, YAO Mengdi, LI Xiangqian, LI Junping. Research and practice of multidimensional information model for super high arch dam construction[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1884-1895.
[7] TAN Yaosheng, FAN Qixiang, WANG Zhilin, CHEN Wenfu, GUO Zengguang, LIN Ende, LIN Peng, ZHOU Tiangang, ZHOU Mengxia, LIU Chunfeng, GONG Pan, PEI Lei. Intelligent construction methods for the Baihetan super high arch dam[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 694-704.
[8] LIU Youzhi, ZHANG Guoxin, TAN Yaosheng, LIU Chunfeng, GONG Pan, PEI Lei. Key techniques for dam construction simulations[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 714-723.
[9] QIAO Yu, YANG Ning, TAN Peng, PENG Haoyang, WU Wei, ZHOU Dajian, WANG Xiaonan. Engineering application and factors affecting infrared temperature measurements of mass concrete surfaces[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 730-737.
[10] WANG Feng, ZHOU Yihong, ZHAO Chunju, ZHOU Huawei, CHEN Wenfu, TAN Yaosheng, LIANG Zhipeng, PAN Zhiguo, WANG Fang. Thermal parameter inversion for various materials of super high arch dams based on the hybrid particle swarm optimization method[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 747-755.
[11] WANG Fei, LIU Jinfei, YIN Xishuang, TAN Yaosheng, ZHOU Tiangang, YANG Zhiyue, FENG Bo, YANG Xiaolong. Intelligent scheduling for high arch dams[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 756-767.
[12] XU Jianjiang, CHEN Wenfu, TAN Yaosheng, GAO Shikui, ZHOU Tiangang, ZHOU Mengxia, LIU Chunfeng, LIANG Cheng, LI Xiangqian. Intelligent concrete transport methods for super-high arch dams[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 768-776.
[13] WANG Jundong, ZHAO Yuezhe. Stepped sound diffuser arrangement and diffusion analysis[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 261-268.
[14] WANG Liping, KONG Xiangyu, YU Guang. Motor servo control parameter tuning for parallel and hybrid machine tools based on a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1106-1114.
[15] WEI Pengcheng, LIN Peng, WANG Zhilin, WANG Kexiang, HUANG Jicun. Foundation grouting times and uplift control of the Baihetan super-high arch dam[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(7): 557-565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd