Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (9) : 1524-1531     DOI: 10.16511/j.cnki.qhdxxb.2022.26.009
MECHANICAL ENGINEERING |
Autonomous positioning for wall climbing robots based on a combination of an external camera and a robot-mounted inertial measurement unit
ZHANG Wen, DING Yulin, CHEN Yonghua, SUN Zhenguo
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(5832 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Sensor accuracy in special environments can be very limited due to closed systems and magnetic interference. For example, sensors on wall climbing robots can experience accumulation of autonomous positioning errors with time. The paper presents an autonomous positioning method for wall climbing robots based on an external RGB-D camera and a robot-mounted inertial measurement unit (IMU). This method uses the target tracking method with a deep learning and kernelized correlation filter (KCF) for preliminary positioning. A normal direction projection method is then used to locate the center on the top of the robot shell for the robot position positioning. The system determines the normal, the roll angle and the heading of the robot with a series EKF filter calculating the roll angle, pitch angle and heading to estimate the robot attitude. Tests show that the wall climbing robot positioning error is within 0.02 m, the heading error and the roll angle error for the attitude estimate are both within 2.5°, and the pitch angle error is within 1.5°. This system effectively improves the wall climbing robot positioning accuracy.
Keywords RGB-D cameras      3D point cloud      extended Kalman filters      wall climbing robots      inertial measurement unit     
Issue Date: 18 August 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Wen
DING Yulin
CHEN Yonghua
SUN Zhenguo
Cite this article:   
ZHANG Wen,DING Yulin,CHEN Yonghua, et al. Autonomous positioning for wall climbing robots based on a combination of an external camera and a robot-mounted inertial measurement unit[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1524-1531.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.26.009     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I9/1524
  
  
  
  
  
  
  
  
  
  
  
  
[1] SHUKLA A, KARKI H. Application of robotics in offshore oil and gas industry: A review Part II[J]. Robotics and Autonomous Systems, 2016, 75: 508-524.
[2] 中华人民共和国国家能源局. 承压设备无损检测 第3部分超声检测: NB/T47013.3—2015[S]. 北京: 中国标准出版社, 2015. National Energy Administration of the People's Republic of China. Nondestructive testing of pressure equipments Part 3: Ultrasonic testing: NB/T47013.3-2015[S]. Beijing: Standards Press of China, 2015. (in Chinese)
[3] CHANG C L, CHANG C Y, TANG Z Y, et al. High-efficiency automatic recharging mechanism for cleaning robot using multi-sensor[J]. Sensors, 2018, 18(11): 3911.
[4] ZHU J S, SUN Z G, HUANG W, et al. Design of a master-slave composite wall climbing robot system for penstock assembly welding[C]//12th International Conference on Intelligent Robotics and Applications. Shenyang, China: Springer, 2019: 123-134.
[5] KIM Y, AN J, LEE J. Robust navigational system for a transporter using GPS/INS fusion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3346-3354.
[6] FAN J Z, XU T, FANG Q Q, et al. A novel style design of a permanent-magnetic adsorption mechanism for a wall-climbing robot[J]. Journal of Mechanisms and Robotics, 2020, 12(3): 035001.
[7] 邢海峰, 陈志勇, 张新喜, 等. MIMU在不同情况下的可观测性分析[J]. 清华大学学报(自然科学版), 2020, 60(1): 82-88. XING H F, CHEN Z Y, ZHANG X X, et al. Observability analysis of MIMU devices in different conditions[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(1): 82-88. (in Chinese)
[8] VENKATNARAYAN R H, SHAHZAD M. Enhancing indoor inertial odometry with WiFi[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(2): 47.
[9] FAN Q G, SUN B W, SUN Y, et al. Data fusion for indoor mobile robot positioning based on tightly coupled INS/UWB[J]. The Journal of Navigation, 2017, 70(5): 1079-1097.
[10] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
[11] NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//2011 10th IEEE International Symposium on Mixed and Augmented Reality. Basel, Switzerland: IEEE, 2011: 127-136.
[12] JIANG P, CHEN L, GUO H, et al. Novel indoor positioning algorithm based on Lidar/inertial measurement unit integrated system[J]. International Journal of Advanced Robotic Systems, 2021, 18(2): 1729881421999923.
[13] ROMERO-RAMIREZ F J, MUÑOZ-SALINAS R, MEDINA-CARNICER R. Speeded up detection of squared fiducial markers[J]. Image and vision Computing, 2018, 76: 38-47.
[14] MERRIAUX P, DUPUIS Y, BOUTTEAU R, et al. A study of Vicon system positioning performance[J]. Sensors, 2017, 17(7): 1591.
[15] ZHAO Y H, MENEGATTI E. MS3D: Mean-shift object tracking boosted by joint back projection of color and depth[C]//15th International Conference on Intelligent Autonomous Systems. Switzerland: Springer, 2018: 222-236.
[16] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv, 2018: 1804.02767.
[17] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
[18] WANG Y, RAJAMANI R. Direction cosine matrix estimation with an inertial measurement unit[J]. Mechanical Systems and Signal Processing, 2018, 109: 268-284.
[1] XING Haifeng, CHEN Zhiyong, ZHANG Xinxi, GUO Meifeng. Observability analysis of MIMU devices in different conditions[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 82-88.
[2] LI Qi, BAI Zhengdong, ZHAO Sihao, DAI Dongkai, XING Haifeng. Performance evaluation of the Allan variance method for ring laser gyroscope noise analyses[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(11): 887-894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd