Research Article |
|
|
|
|
|
Analysis of intercity travel in the Yangtze River Delta based on mobile signaling data |
LI Ziyuan, SUN Hao, LI Linbo |
Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 200000, China |
|
|
Abstract The scale and spatial distribution of travel demand are important for transportation planning. The stable travel demand network among 306 counties in the Yangtze River Delta (YRD) was extracted from mobile phone signaling data. The scale and spatial distribution characteristics of intercity travel in the YRD were analyzed from nodes and edges based on the complex network analysis method. The results show that extensive intercity travel links have been formed in the YRD. However, only a few counties within Nanjing, Suzhou, Wuxi, Changzhou, Shanghai, Hangzhou, Zhenjiang, Shaoxing, and Chizhou etc. have high-intensity intercity travel. Moreover, the economic scale, geographical location, and transportation conditions of counties affect the capability and intensity of intercity travel. The spatial distribution of intercity trips has evident spatial proximity and intensity hierarchy. High-intensity trips are responsible for 39.4% of the trip intensity with 0.05% of the number of links. The intercity trips still have a centripetal nature.
|
Keywords
urban agglomeration
intercity travel
mobile phone signaling
complex network
|
Issue Date: 16 June 2022
|
|
|
[1] 中共中央, 国务院. 长江三角洲区域一体化发展规划纲要[EB/OL]. (2019-12-01)[2021-10-21]. http://www.gov.cn/zhengce/2019-12/01/content_5457442.htm. The CPC Central Committee, The State Council. The outline of the Yangtze River Delta regional integrated development plan[EB/OL]. (2019-12-01)[2021-10-21]. http://www.gov.cn/zhengce/2019-12/01/content_5457442.htm. (in Chinese)[1] 中共中央国务院. 长江三角洲区域一体化发展规划纲要[EB/OL]. (2019-12-01)http://www.gov.cn/zhengce/2019-12/01/content_5457442.htm. THE CPC CENTRAL COMMITTEE AND THE STATE COUNCIL. The Outline of the Yangtze River Delta Regional Integrated Development Plan[EB/OL]. (2019-12-01)http://www.gov.cn/zhengce/2019-12/01/content_5457442.htm. (in Chinese) [2] 邓羽, 刘盛和, 蔡建明, 等. 中国省际人口空间格局演化的分析方法与实证[J]. 地理学报, 2014, 69(10):1473-1486. DENG Y, LIU S H, CAI J M, et al. Spatial pattern and its evolution of Chinese provincial population and empirical study[J]. Acta Geographica Sinica, 2014, 69(10):1473-1486. (in Chinese) [3] 吴子啸. 基于手机信令数据的长三角城际出行特征研究[C]//品质交通与协同共治:2019年中国城市交通规划年会论文集. 中国, 成都:中国城市规划设计研究院城市交通专业研究院, 2019:3653-3665. WU Z X. Intercity travel characteristics in Yangtze River Delta based on mobile signaling data[C]//Quality Transportation and Collaborative Governance:Proceedings of the 2019 China Urban Transportation Planning Annual Conference. Chengdu, China:Urban Transportation Institute of China Academy of Urban Planning & Design, 2019:3653-3665. (in Chinese) [4] 徐敏, 黄震方, 曹芳东, 等. 基于在线预订数据分析的旅游流网络结构特征与影响因素:以长三角地区为例[J]. 经济地理, 2018, 38(6):193-202. XU M, HUANG Z F, CAO F D, et al. The network structure features and influence factors of tourism flows based on online data analysis:Taking the Yangtze River delta region as an example[J]. Economic Geography, 2018, 38(6):193-202. (in Chinese) [5] HAN J, LIU J B. Urban spatial interaction analysis using inter-city transport big data:A case study of the Yangtze River delta urban agglomeration of China[J]. Sustainability, 2018, 10(12):4459. [6] 唐锦玥, 张维阳, 王逸飞. 长三角城际日常人口移动网络的格局与影响机制[J]. 地理研究, 2020, 39(5):1166-1181. TANG J Y, ZHANG W Y, WANG Y F. The pattern and influencing factors of daily population movement network in the Yangtze River Delta[J]. Geographical Research, 2020, 39(5):1166-1181. (in Chinese) [7] ZHANG, W Y, DERUDDER B, WANG J H, et al. Using location-based social media to chart the patterns of people moving between cities:The case of Weibo-users in the Yangtze River Delta[J]. Journal of Urban Technology, 2016, 23(3):91-111. [8] WANG X W, DING S L, CAO W D, et al. Research on network patterns and influencing factors of population flow and migration in the Yangtze River Delta urban agglomeration, China[J]. Sustainability, 2020, 12(7):6803. [9] CUI C, WU X L, LIU L, et al. The spatial-temporal dynamics of daily intercity mobility in the Yangtze River Delta:An analysis using big data[J]. Habitat International, 2020, 106:102174. [10] 王垚, 钮心毅, 宋小冬. 基于城际出行的长三角城市群空间组织特征[J]. 城市规划, 2021, 45(11):43-53. WANG Y, NIU X Y, SONG X D. Spatial organizational characteristics of the Yangtze River Delta urban agglomeration based on intercity trips[J]. City Planning Review, 2021, 45(11):43-53. (in Chinese) [11] 王垚, 钮心毅. 长江三角洲城市群核心区的功能多中心特征和规划响应:基于城际出行联系的研究[J]. 国际城市规划, 2021, 36(6):98-108. WANG Y, NIU X Y. The functional Polycentricity characteristics and planning responses of urban agglomeration core area in the Yangtze River Delta:A study based on intercity trip connection[J]. Urban Planning International, 2021, 36(6):98-108. (in Chinese) [12] 王垚, 钮心毅. 基于跨城出行联系的城市群等级结构测度与规划建议:以长江三角洲城市群核心区为例[J]. 南方建筑, 2020(2):28-34. WANG Y, NIU X Y. Measurement and the planning proposal of the hierarchical structure of urban agglomeration based on inter-city trip linkages:A case study on core regions of urban agglomeration in the Yangtze River Delta[J]. South Architecture, 2020(2):28-34. (in Chinese) [13] 钮心毅, 岳雨峰, 李凯克. 长三角城市群中心城市与周边城市的城际出行特征研究[J]. 上海城市规划, 2020(4):1-8. NIU X Y, YUE Y F, LI K K. Inter-city travel characteristics between central and surrounding cities in the Yangtze River Delta urban agglomerations[J]. Shanghai Urban Planning Review, 2020(4):1-8. (in Chinese) [14] LI W F, CHENG X Y, DUAN Z Y, et al. A framework for spatial interaction analysis based on large-scale mobile phone data[J]. Computational Intelligence and Neuroscience, 2014, 2014:363502. [15] QI R Z, PAN J H, ZHANG R. Comparison of intercity travel network structure during daily time and holiday in China[J]. Complexity, 2021, 2021:2193782. [16] 何凌晖, 余庆, 李玮峰, 等. 新冠肺炎疫情影响下的城际交通运输需求分析[J]. 城市交通, 2020, 18(3):51-61. HE L H, YU Q, LI W F, et al. Inter-city transportation demand under the COVID-19 pandemic[J]. Urban Transport of China, 2020, 18(3):51-61. (in Chinese) [17] 黄坤. 基于轨道潜在需求挖掘的柔性线路接驳公交设计[D]. 西安:长安大学, 2020. HUANG K. Design of flexible line connection bus based on a data mining approach for potential rail transit demand[D]. Xi'an:Chang'an University, 2020. (in Chinese) [18] DUAN Z Y, LEI Z X, ZHANG M, et al. Understanding multiple days' metro travel demand at aggregate level[J]. IET Intelligent Transport Systems, 2019, 13(5):756-763. [19] 潘竟虎, 赖建波. 中国城市间人口流动空间格局的网络分析:以国庆-中秋长假和腾讯迁徙数据为例[J]. 地理研究, 2019, 38(7):1678-1693. PAN J H, LAI J B. Research on spatial pattern of population mobility among cities:A case study of "Tencent Migration" big data in "National Day-Mid-Autumn Festival" vacation[J]. Geographical Research, 2019, 38(7):1678-1693. (in Chinese) [20] 赵梓渝, 魏冶, 庞瑞秋, 等. 基于人口省际流动的中国城市网络转变中心性与控制力研究[J]. 地理学报, 2017, 72(6):1032-1048. ZHAO Z Y, WEI Y, PANG R Q, et al. Alter-based centrality and power of Chinese city network using inter-provincial population flow[J]. Acta Geographica Sinica, 2017, 72(6):1032-1048. (in Chinese) [21] LI T, WANG J E, HUANG J, et al. Exploring temporal heterogeneity in an intercity travel network:A comparative study between weekdays and holidays in China[J]. Journal of Geographical Sciences, 2020, 30(12):1943-1962. [22] ZHU R X, WANG Y J, LIN D, et al. Exploring the rich-club characteristic in internal migration:Evidence from Chinese Chunyun migration[J]. Cities, 2021, 114:103198. [23] 钮心毅, 李凯克. 紧密一日交流圈视角下上海都市圈的跨城功能联系[J]. 上海城市规划, 2019, 3(3):16-22. NIU X Y, LI K K. Inter-city functional linkages in Shanghai metropolitan region from the perspective of close daily communication area[J]. Shanghai Urban Planning Review, 2019, 3(3):16-22. (in Chinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|