Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (7) : 1195-1202     DOI: 10.16511/j.cnki.qhdxxb.2022.26.019
Research Article |
Understanding the scaling patterns of commuting in the Guangdong-Hong Kong-Macao Greater Bay Area with location-based service big data
CHEN Ruoyu1,2,3, ZHOU Jiangping1,2,4
1. Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China;
2. Guangdong-Hong Kong-Macao Joint Laboratory on Smart Cities, Hong Kong 999077, China;
3. School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
4. Faculty of Architecture, The University of Hong Kong, Hong Kong 999077, China
Download: PDF(5747 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Urban clusters are important in China's development. The integration of transportation systems in these urban clusters is one of the most important tasks for promoting the development of these clusters, which requires a full understanding of the current travel patterns. Location-based service (LBS) big data for the Guangdong-Hong Kong-Macao Greater Bay Area was analyzed to identify the commuter travel scaling patterns. The results show that most commuting trips are still inside the cities, but there are sizable inter-city commutes in some areas. The results also show that the probability density of the commute distance is exponentially related to the distance. In addition, the scaling parameter for intra-city commuting is generally larger than that of inter-city commuting, which indicates that trips within cities are more sensitive to the commuting distance. The scaling parameter further reflects the connections between the transportation and land use, which can be useful for policy making.
Keywords urban clusters      commuting travel      distance decay      transportation and land use     
Issue Date: 16 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Ruoyu
ZHOU Jiangping
Cite this article:   
CHEN Ruoyu,ZHOU Jiangping. Understanding the scaling patterns of commuting in the Guangdong-Hong Kong-Macao Greater Bay Area with location-based service big data[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1195-1202.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.26.019     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I7/1195
  
  
  
  
[1] WU F L. China's emergent city-region governance:A new form of state spatial selectivity through state-orchestrated rescaling[J]. International Journal of Urban and Regional Research, 2016, 40(6):1134-1151.
[2] LIU X J, ZHOU J P. Mind the missing links in China's urbanizing landscape:The phenomenon of broken intercity trunk roads and its underpinnings[J]. Landscape and Urban Planning, 2017, 165:64-72.
[3] 汪光焘, 王婷. 贯彻《交通强国建设纲要》, 推进城市交通高质量发展[J]. 城市规划, 2020, 44(3):31-42. WANG G T, WANG T. Implementing the Outline for Building a Leading Transportation Nation to promote high-quality development of urban transportation[J]. City Planning Review, 2020, 44(3):31-42. (in Chinese)
[4] HU L Q, YANG J W, YANG T R, et al. Urban spatial structure and travel in China[J]. Journal of Planning Literature, 2019, 35(1):6-24.
[5] ZHOU J P, MURPHY E, LONG Y. Commuting efficiency in the Beijing metropolitan area:An exploration combining smartcard and travel survey data[J]. Journal of Transport Geography, 2014, 41:175-183.
[6] SUN L J, JIN J G, AXHAUSEN K W, et al. Quantifying long-term evolution of intra-urban spatial interactions[J]. Journal of the Royal Society Interface, 2015, 12(102):20141089.
[7] GONZÁLEZ M C, HIDALGO C A, BARABÁSI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453(7196):779-782.
[8] CAVALLARO F, DIANIN A. Efficiency of public transport for cross-border commuting:An accessibility-based analysis in Central Europe[J]. Journal of Transport Geography, 2020, 89:102876.
[9] YAN X Y, WANG W X, GAO Z Y, et al. Universal model of individual and population mobility on diverse spatial scales[J]. Nature Communications, 2017, 8(1):1639.
[10] BROCKMANN D, HUFNAGEL L, GEISEL T. The scaling laws of human travel[J]. Nature, 2006, 439(7075):462-465.
[11] BOUSSAUW K, WITLOX F. Excess travel in non- commuting trips:A regional case study[C]//Proceedings of the world conference on transport research. Lisbon, Portugal:WCTR, 2010:1-23.
[12] 王宝强, 陈娴, 施澄. 基于多源数据的武汉市环城游憩空间特征解析[J]. 中国园林, 2021, 37(6):49-54. WANG B Q, CHEN X, SHI C. Analysis of recreational spatial features of Wuhan city based on multi-source data[J]. Chinese Landscape Architecture, 2021, 37(6):49-54. (in Chinese)
[13] YANG J W, FRENCH S, HOLT J, et al. Measuring the structure of U.S. metropolitan areas, 1970-2000[J]. Journal of the American Planning Association, 2012, 78(2):197-209.
[14] YANG J W. Policy implications of excess commuting:Examining the impacts of changes in US metropolitan spatial structure[J]. Urban Studies, 2008, 45(2):391-405.
[15] LONG Y, THILL J C. Combining smart card data and household travel survey to analyze jobs-housing relationships in Beijing[J]. Computers, Environment and Urban Systems, 2015, 53:19-35.
[16] ZHANG W J, FANG C Y, ZHOU L, et al. Measuring megaregional structure in the Pearl River Delta by mobile phone signaling data:A complex network approach[J]. Cities, 2020, 104:102809.
[17] 佘振苏, 苏卫东. 湍流中的层次结构和标度律[J]. 力学进展, 1999, 29(3):289-303. SHE Z S, SU W D. Hierarchical structures and scalings in turbulence[J]. Advances in Mechanics, 1999, 29(3):289-303. (in Chinese)
[18] LUX T. Applications of statistical physics in finance and economics[M]. Cheltenham:Edward Elgar Publishing, 2009.
[19] KELLO C T, BROWN G D A, FERRER-I-CANCHO R, et al. Scaling laws in cognitive sciences[J]. Trends in Cognitive Sciences, 2010, 14(5):223-232.
[20] BARTHELEMY M. The statistical physics of cities[J]. Nature Reviews Physics, 2019, 1(6):406-415.
[21] 王世福, 赵渺希. 广佛市民地铁跨城活动的空间分析[J]. 城市规划学刊, 2012(3):23-29. WANG S F, ZHAO M X. Intercity trips and activities:The case of Guangzhou and Foshan[J]. Urban Planning Forum, 2012(3):23-29. (in Chinese)
[22] REN X H, WANG F, WANG C Y, et al. Impact of high-speed rail on intercity travel behavior change:The evidence from the Chengdu-Chongqing passenger dedicated line[J]. Journal of Transport and Land Use, 2019, 12(1):265-285.
[23] CUI C, WU X L, LIU L, et al. The spatial-temporal dynamics of daily intercity mobility in the Yangtze River Delta:An analysis using big data[J]. Habitat International, 2020, 106:102174.
[24] 钮心毅, 王垚, 刘嘉伟, 等. 基于跨城功能联系的上海都市圈空间结构研究[J]. 城市规划学刊, 2018(5):80-87. NIU X Y, WANG Y, LIU J W, et al. Spatial structure of Shanghai conurbation area from perspective of inter-city functional links[J]. Urban Planning Forum, 2018(5):80-87. (in Chinese)
[25] HUI E C M, LI X, CHEN T T, et al. Deciphering the spatial structure of China's megacity region:A new bay area-the Guangdong-Hong Kong-Macao Greater Bay Area in the making[J]. Cities, 2020, 105:102168.
[26] LIN P Q, HE Y T, PEI M Y. Data-driven analysis of traffic volume and hub city evolution of cities in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. IEEE Access, 2020, 8:12043-12056.
[27] KEUSCHNIGG M. Scaling trajectories of cities[J]. Proceedings of the National Academy of Sciences of the United States America, 2019, 116(28):13759-13761.
[28] SCHLÄPFER M, DONG L, O'KEEFFE K, et al. The universal visitation law of human mobility[J]. Nature, 2021, 593(7860):522-527.
[29] LOUF R, BARTHELEMY M. How congestion shapes cities:From mobility patterns to scaling[J]. Scientific Reports, 2014, 4:5561.
[30] BETTENCOURT L M A, LOBO J, HELBING D, et al. Growth, innovation, scaling, and the pace of life in cities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17):7301-7306.
[31] SONG C M, KOREN T, WANG P, et al. Modelling the scaling properties of human mobility[J]. Nature Physics, 2010, 6(10):818-823.
[32] TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46(S1):234-240.
[33] CAI H, ZHAN X W, ZHU J, et al. Understanding taxi travel patterns[J]. Physica A:Statistical Mechanics and its Applications, 2016, 457:590-597.
[34] LIU Y, SUI Z W, KANG C G, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data[J]. PLoS One, 2014, 9(1):e86026.
[35] LIANG X, ZHENG X D, LV W F, et al. The scaling of human mobility by taxis is exponential[J]. Physica A:Statistical Mechanics and its Applications, 2012, 391(5):2135-2144.
[36] 中国城市规划设计研究院. 2021年度中国主要城市通勤监测报告[R/OL]. (2021-07-24)[2022-05-13]. http://www.chinautc.com/upload/fckeditor/2021tongqinjiancebaogao.pdf. China Academy of Urban Planning Design. Commuting monitoring report of major cities in China 2021[R/OL]. (2021-07-21)[2022-05-13]. http://www.chinautc.com/upload/fckeditor/2021tongqinjiancebaogao.pdf. (in Chinese)
[37] 中国城市规划设计研究院深圳分院. 粤港澳大湾区通勤监测报告[R/OL]. (2021-09-08)[2022-05-13]. https://mp.weixin.qq.com/s/cYnYmdwWVmrV_KeknycZ7Q. China Academy of Urban Planning Design Shenzhen. Report on commuter monitoring in Guangdong-Hong Kong-Macao Greater Bay Area[R/OL]. (2021-09-08)[2022-05-13]. https://mp.weixin.qq.com/s/cYnYmdwWVmrV_KeknycZ7Q. (in Chinese)
[38] CHEN Z H, LI Y, WANG P. Transportation accessibility and regional growth in the Greater Bay Area of China[J]. Transportation Research Part D:Transport and Environment, 2020, 86:102453.
[39] 马海涛, 黄晓东, 李迎成. 粤港澳大湾区城市群知识多中心的演化过程与机理[J]. 地理学报, 2018, 73(12):2297-2314. MA H T, HUANG X D, LI Y C. The evolution and mechanisms of megalopolitan knowledge polycentricity of Guangdong-Hong Kong-Macao Greater Bay Area[J]. Acta Geographica Sinica, 2018, 73(12):2297-2314. (in Chinese)
[40] 眭文娟, 张昱, 王大卫. 粤港澳大湾区产业协同的发展现状:以珠三角9市制造业为例[J]. 城市观察, 2018, 57(5):24-30. SUI W J, ZHANG Y, WANG D W. Research on the industrial synergy development in the Guangdong-Hong Kong-Macao Bay Area:A case study of 9 cities in Guangdong Province[J]. Urban Insight, 2018, 57(5):24-30. (in Chinese)
[41] 向晓梅, 杨娟. 粤港澳大湾区产业协同发展的机制和模式[J]. 华南师范大学学报(社会科学版), 2018(2):17-20. XIANG X M, YANG J. The paths of the industrial synergy development in Guangdong-Hong Kong-Macao Bay Area[J]. Journal of South China Normal University (Social Science Edition), 2018(2):17-20. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd