Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2022, Vol. 62 Issue (11) : 1780-1788     DOI: 10.16511/j.cnki.qhdxxb.2022.26.030
Research Article |
RFI intelligent monitoring techniques for FAST
ZHANG Haiyan1,3,5, HU Hongliang2, WANG Yu1,6, JIANG Huajing4, GAN Hengqian1,3, HU Hao1, HUANG Shijie1
1. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;
2. Jiangnan Institute of Mechanical and Electrical Design, Guiyang 550009, China;
3. Key Laboratory of FAST, Chinese Academy of Sciences, Beijing 100101, China;
4. Tejin Intelligent Technology Co., Shanghai 201112, China;
5. Hebei Key Laboratory of Radio Astronomy Technology, Shijiazhuang 050081, China;
6. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(9004 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Radio frequency interference (RFI) intelligent monitoring techniques are being developed for the electromagnetic environment of the five-hundred-meter aperture spherical radio telescope (FAST), including interference source classification and identification and high-precision localization. According to the characteristics of FAST sites, the interference detection and identification uses multi-site cooperative spectrum sensing and signal identification based on deep neural networks. The interference source localization uses time difference of arrival (TDOA) for accurate localization with low signal-to-noise ratios. The time difference between signals arriving at different receivers is estimated using the generalized mutual correlation method. This intelligent monitoring research lays the groundwork for the FAST radio interference intelligent monitoring system as well as the FAST spectrum management and electromagnetic environmental protection work.
Keywords FAST      radio frequency interference      interference identification and localization     
Issue Date: 19 October 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Haiyan
HU Hongliang
WANG Yu
JIANG Huajing
GAN Hengqian
HU Hao
HUANG Shijie
Cite this article:   
ZHANG Haiyan,HU Hongliang,WANG Yu, et al. RFI intelligent monitoring techniques for FAST[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1780-1788.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2022.26.030     OR     http://jst.tsinghuajournals.com/EN/Y2022/V62/I11/1780
  
  
  
  
  
  
  
  
  
  
[1] 胡浩, 张海燕, 黄仕杰. FAST电波环境保护措施[J]. 深空探测学报, 2020, 7(2):152-157. HU H, ZHANG H Y, HUANG S J. Protection measures of FAST radio environment[J]. Journal of Deep Space Exploration, 2020, 7(2):152-157. (in Chinese)
[2] ZHANG H Y, WU M C, YUE Y L, et al. RFI measurements and mitigation for FAST[J]. Research in Astronomy and Astrophysics, 2020, 20(5):75.
[3] KOSTYLEV V I. Energy detection of a signal with random amplitude[C]//2002 IEEE International Conference on Communications. New York, USA:IEEE, 2002:1606-1610.
[4] 彭超然, 刁伟鹤, 杜振宇. 基于深度卷积神经网络的数字调制方式识别[J]. 计算机测量与控制, 2018, 26(8):222-226. PENG C R, DIAO W H, DU Z Y. Digital modulation recognition based on deep convolutional neural network[J]. Computer Measurement and Control, 2018, 26(8):222-226. (in Chinese)
[5] KALPANA R, BASKARAN M. TAR:TOA-AOA based random transmission directed localization[J]. Wireless Personal Communications, 2016, 90(2):889-902.
[6] YUCEK T, ARSLAN H. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys and Tutorials, 2009, 11(1):116-130.
[7] ZENG Y H, LIANG Y C, HOANG A T, et al. A review on spectrum sensing for cognitive radio:Challenges and solutions[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010:381465.
[8] HE C W, YUAN Y B, TAN B F. Alternating direction method of multipliers for TOA-based positioning under mixed sparse LOS/NLOS environments[J]. IEEE Access, 2021, 9:28407-28412.
[9] DIGHAM F F, ALOUINI M S, SIMON M K. On the energy detection of unknown signals over fading channels[J]. IEEE Transactions on Communications, 2007, 55(1):21-24.
[10] MISHRA S M, SAHAI A, BRODERSEN R W. Cooperative sensing among cognitive radios[C]//2006 IEEE International Conference on Communications. Istanbul, Turkey:IEEE, 2006:1658-1663.
[11] QUAN Z, CUI S G, SAYED A H. Optimal linear cooperation for spectrum sensing in cognitive radio networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1):28-40.
[12] FAN R F, JIANG H. Optimal multi-channel cooperative sensing in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2010, 9(3):1128-1138.
[13] YU H G, TANG W B, LI S Q. Optimization of cooperative spectrum sensing in multiple-channel cognitive radio networks[C]//2011 IEEE Global Telecommunications Conference-GLOBECOM 2011. Houston, USA:IEEE, 2012:1-5.
[14] GABER A, OMAR A. A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.11ac[J]. IEEE Transactions on Wireless Communications, 2015, 14(5):2440-2454.
[15] KIM Y H, KIM D G, HAN J W, et al. Analysis of sensor-emitter geometry for emitter localisation using TDOA and FDOA measurements[J]. IET Radar, Sonar & Navigation, 2017, 11(2):341-349.
[16] LI X L. On correcting the phase bias of GCC in spatially correlated noise fields[J]. Signal Processing, 2021, 180:107859.
[17] DENG Z L, WANG H H, ZHENG X Y, et al. Base station selection for hybrid TDOA/RTT/DOA positioning in mixed LOS/NLOS environment[J]. Sensors, 2020, 20(15):4132.
[1] DONG Qiang, CHEN Qiang, HUANG Ke, XING Wei, SHEN Bing. A three-dimensional follow-up system for a spacecraft low-gravity simulation test platform[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 449-460.
[2] YANG Yaqin, XU Peng, WU Xishui. Adaptive modeling method based on the Fast-MCD to analyze railway track irregularity deterioration[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 516-522.
[3] WU Ruofei, LEI Zheng, YANG Lei, WANG Yong, HUANG Lin, TANG Jiajia, SHEN Ming, GUO Anping, GAN Renbo, SHI Xiaoan, LI Hui, YAO Rui. Repair and maintenance of the FAST equipment[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1741-1750.
[4] ZHAO Yacong, WANG Qiming. Dynamic modeling of the FAST cable-driven parallel robots[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1772-1779.
[5] YIN Jianing, JIANG Peng, CHEN Ming, YAO Rui. Dynamic modeling of a cable-driven parallel robot with a Stewart platform for use in FAST[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1764-1771.
[6] LEI Zheng, JIANG Peng, WANG Qiming. Prognostics health management system for FAST actuators[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1796-1802.
[7] ZHANG Ningyuan, LUO Bin, SHEN Yuzhou, JIANG Peng, LI Hui, LI Qingwei. Structural response of the FAST cable-net at large zenith angles[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1809-1815,1822.
[8] ZHANG Ningyuan, LUO Bin, SHEN Yuzhou, JIANG Peng, LI Hui, LI Qingwei. Quasi-real-time evaluation system for the FAST cable network operations[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1816-1822.
[9] LI Hui, SONG Liqiang, YANG Qingge, LI Qingwei. Analyses and improvement method of sliding failures and structural damage of the triangular reflector elements in FAST[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1823-1832.
[10] SONG Liqiang, LI Hui, YANG Lei, YANG Qingge. Mass evaluation algorithm and maintenance key technology of reflector unit about FAST[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1833-1838.
[11] HE Qijia, WANG Qiming, LI Jiaxuan, WANG Zhengjia, WANG Tong. Transport robot path planning based on an advantage dueling double deep Q-network[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1751-1757.
[12] LI Qingwei, LI Hui, JIANG Peng, YAO Rui, PAN Gaofeng. Residual bearing capacity of the steel cables and anchorages of the FAST feed support system[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1758-1763,1779.
[13] DU Ming, ZHENG Kaiwen, CHEN Ziyang, ZHOU Junfeng. TFP: Efficient algorithm for fastest path queries[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 656-663.
[14] E Zhibo, LI Junfeng. Fast simulation algorithm for area target visibility using remote sensing satellites[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 699-704.
[15] YANG Zengyin, WU Qian, LI Hewu, WU Jianping. NTD-BGP: An inter-domain routing protocol for integrated terrestrial-satellite networks[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 512-522.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd