Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (2) : 149-152     DOI:
Orginal Article |
Representation of emergency case information
Chao HUANG,Quanyi HUANG(),Shifei SHEN,Xueming SHU
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Download: PDF(1164 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Case representation is the basis for case-based reasoning. The representation should efficiently organize large amounts of information which is usually unstructured information, related to the emergency cases. This paper describes the attributes that should be included in emergency case descriptions with a case framework based on analyses of emergency events and information with both structured and unstructured information. The structured information uses fuzzy sets to describe the non-quantitative data using memberships instead of numerical values. The unstructured information is analyzed by three algorithms for keyword extraction with the word co-occurrence approach chosen as the best. The extracted keywords are then used to obtain the proper information segments for the unstructured part of the emergency case. The whole case is represented in a semi-structured form with quantitative attributes used in the case retrieval and text data used in the case reasoning. The results show that this approach gives good results as a foundation for case-based reasoning applications.

Keywords emergency event      case-based reasoning      case representation      fuzzy sets      information extraction     
ZTFLH:     
Fund: 
Issue Date: 15 February 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao HUANG
Quanyi HUANG
Shifei SHEN
Xueming SHU
Cite this article:   
Chao HUANG,Quanyi HUANG,Shifei SHEN, et al. Representation of emergency case information[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 149-152.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I2/149
  
  
日期 07-23 07-24 07-25 07-26 07-27 07-28
数量 18 178 713 929 743 740
  
事件描述 应急措施
动车 医院
事故 铁道部
脱轨 赶赴
雷击 盛光祖
停车 官兵
遇难 抢救
…… ……
  
[1] 张英菊, 仲秋雁, 叶鑫, 等. CBR的应急案例通用表示与存储模式[J]. 计算机工程, 2009(17): 28-30. ZHANG Yingju, ZHONG Qiuyan, YE Xin, et al.Case-based reasoning universal mode of representing and storing emergency cases[J]. Computer Engineering, 2009 (17): 28-30. (in Chinese)
[2] 张贤坤, 刘栋, 高珊, 等. 基于CBR的应急案例本体模型[J]. 计算机应用, 2011(10): 2800-2803. ZHANG Xiankun, LIU Dong, GAO Shan, et al.CBR-based emergency case ontology model[J]. Journal of Computer Applications, 2011(10): 2800-2803. (in Chinese)
[3] Massie S, Wiratunga N. From anomaly reports to cases [C]// ICCBR. Belfast, UK, 2007: 359-373.
[4] Lenz M. Case retrieval nets applied to large case-bases[J]. Lecture Notes in Computer Science, 1996,1137: 227-239.
url: http://dx.doi.org/10.1007/3-540-61708-6_63
[5] Lenz M, Auriol E, Manago M. Diagnosis and Decision Support[M]. Artificial Intelligence. Berlin: Springer, 1998: 51-90.
[6] Chakraborti S, Lothian R, Wiratunga N, et al. Fast case retrieval nets for textual data [C]//ECCBR. Fethiye, Turkey, 2006: 400-414.
[7] Adeyanju I, Wiratunga N. Case retrieval reuse net (CR2N): An architecture for reuse of textual solutions [C]//ICCBR. Seattle, USA, 2009: 14-28.
[8] Tactical Situation Object (TSO) [Z/OL]. [2012-12-18]. (2012-01-14). http://www.tacticalsituationobject.org.
[9] Salton G, Wong A, Yang C S. Vector-space model for automatic indexing[J]. Communications of the ACM, 1975, 18(11): 613-620.
url: http://dx.doi.org/10.1145/361219.361220
[10] Patterson D, Rooney N, Galushka M, et al.SOPHIA-TCBR: A knowledge discovery framework for textual case-based reasoning[J]. Knowledge-Based Systems, 2008, 21(5): 404-414.
url: http://dx.doi.org/10.1016/j.knosys.2008.02.006
[11] HUANG Chao, SHEN Shifei, HUANG Quanyi. A comparative study of keyword extraction from disaster reports [C]//ISCRAM Asia. Beijing, China, 2012.
[12] Yutaka M, Mitsuru I. Keyword extraction from a single document using word co-occurrence statistical information[J]. International Journal on Artificial Intelligence Tools, 2004, 3(13): 157-169.
[1] HU Minghao, WANG Fang, XU Xiantao, LUO Wei, LIU Xiaopeng, LUO Zhunchen, Tan Yushan. Two-stage open information extraction method for the defence technology field[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1309-1316.
[2] MA Zhuanglin, GAO Yang, HU Da-wei, WANG Jin, MA Fei, XIONG Ying. Green transportation level measurements and spatial-temporal evolution characteristics of urban agglomeration transportation systems[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1236-1250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd