Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (2) : 164-171     DOI:
Orginal Article |
Optimal source biased sampling density function for the Monte Carlo method
Jian SU,Zhi ZENG(),Jianping CHENG,Junli LI
Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Download: PDF(1326 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The source biased sampling method reduces the variance and improves the efficiency of Monte Carlo particle transport calculations. This paper gives a multi-region, multi-weight shooting model to simulate the source in transport processes. The density function gives the minimum variance for source biased sampling. The model is solved using a random numerical method to verify the correctness of the function. A particle transportation problem is then simulated to show the significant effect of the variance reduction. This method can be used as a general variance reduction technique in Monte Carlo particle transport analyses to construct the density function for biased source sampling for various particle source parameters, such as the transmission location and direction. It gives the best partition coefficient with the minimum variance in stratified sampling.

Keywords Monte Carlo method      source biasing sampling      variance reduction      optimal bias density function      stratified sampling     
ZTFLH:     
Fund: 
Issue Date: 15 February 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian SU
Zhi ZENG
Jianping CHENG
Junli LI
Cite this article:   
Jian SU,Zhi ZENG,Jianping CHENG, et al. Optimal source biased sampling density function for the Monte Carlo method[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 164-171.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I2/164
X Y PX
1 0
A 0.06 0.54 0.6
B 0.09 0.27 0.3
C 0.08 0.02 0.1
PY 0.23 0.77
  
投篮
区域
分配
比例
投篮
次数
投中
概率
投中
次数
计数
权重
期望 均方差
A 0.6 18 000 0.1 1 800 1
B 0.3 9 000 0.3 2 700 1 0.23 0.420 8
C 0.1 3 000 0.8 2 400 1
  
投篮
区域
分配
比例
投篮
次数
投中
概率
投中
次数
计数
权重
期望 均方差
A 0.427 8 12 835 0.1 128 4 1.402
B 0.370 5 11 115 0.3 333 5 0.810 0.23 0.379 2
C 0.201 7 6 050 0.8 484 0 0.496
  
  
  
层号 体积
Vi/cm3
体积份额
vi
名义半径
ri/cm
名义分配比例
fi
PX*(x=i) 模拟粒子数
N
计数权重
wi
1 31 940 0.023 22.5 0.168 1 0.596 0 5 959 445 0.038
2 47 647 0.034 27.5 0.069 2 0.245 3 2 453 388 0.138
3 66 497 0.047 32.5 0.027 5 0.097 7 976 623 0.485
4 88 488 0.063 37.5 0.011 7 0.038 0 379 564 1.661
5 113 621 0.081 42.5 4.1×10-3 0.014 5 144 895 5.588
6 141 895 0.101 47.5 1.5×10-3 5.5×10-3 54 547 18.54
7 173 311 0.124 52.5 5.7×10-4 2.0×10-3 20 307 60.82
8 207 869 0.148 57.5 2.1×10-4 7.5×10-4 7 491 197.75
9 245 568 0.175 62.5 7.7×10-5 2.7×10-4 2 743 637.99
10 286 409 0.204 67.5 2.8×10-5 1.0×10-4 998 2 045.14
总计 1 403 245 1 0.282 0 1 1.0×107
  
  
  
  
  
  
[1] 裴鹿成. 蒙特卡罗方法中的若干问题[J]. 原子能科学技术, 1963(6): 422-431. PEI Lucheng. Several issues in Monte Carlo method[J]. Atomic Energy Science and Technology, 1963(6): 422-431. (in Chinese)
[2] 董秀芳. 蒙特卡罗方法及其基本特点[J]. 原子能科学技术, 1978(3): 277-289. DONG Xiufang. Monte Carlo method and its basic characteristics[J]. Atomic Energy Science and Technology, 1978(3): 277-289. (in Chinese)
[3] 朱辉, 刘义保, 游运. 蒙特卡罗方法与拟蒙特卡罗方法的历史、现状及展望[J]. 东华理工大学学报: 自然科学版, 2010, 33(4): 357-362. ZHU Hui, LIU Yibao, YOU Yun. Monte Carlo method and quasi-Monte Carlo method[J]. Journal of East China Institute of Technology: Natural Science, 2010, 33(4): 357-362. (in Chinese)
[4] 裴鹿成, 张孝泽. 蒙特卡罗方法及其在粒子输运问题中的应用 [M]. 北京: 科学出版社, 1986. PEI Lucheng, ZHANG Xiaoze. Monte Carlo Methods and Application in Particle Transportation Problem [M]. Beijing: Science Press, 1986. (in Chinese)
[5] 裴鹿成. 计算机随机模拟 [M]. 长沙: 湖南科学出版社, 1989. PEI Lucheng. Computer Random Simulation [M]. Changsha: Hunan Science & Technology Press, 1989. (in Chinese)
[6] 朱永生. 实验物理中的概率和统计 [M]. 北京: 原子能出版社, 2006. ZHU Yongsheng. Probability and Statistics in Experimental Physics [M]. Beijing: Atomic Energy Press, 2006. (in Chinese)
[7] 张崭, 李君利, 武祯, 等. 内照射小器官剂量计算中减方差技巧的比较和应用[J]. 清华大学学报: 自然科学版, 2007, 47(S1): 1051-1056. ZHANG Zhan, LI Junli, WU Zhen, et al.Comparison and application of variance-reduction techniques used in internal radiation dose calculations for small organs[J]. Journal of Tsinghua University: Science and Technology, 2007, 47(S1): 1051-1056. (in Chinese)
[8] 武祯, 李君利. 用于探测器校正因子计算的Monte Carlo方法[J]. 清华大学学报: 自然科学版, 2006, 46(9): 1585-1588. WU Zhen, LI Junli. Monte Carlo method for calculating particle radiation detector correction factors[J]. Journal of Tsinghua University: Science and Technology, 2006, 46(9): 1585-1588. (in Chinese)
[9] Bielajew A F. Correction factors for thick-walled ionization chambers in point-source photon beams[J]. Phys Med Biol, 1990, 35(4): 501-516.
url: http://dx.doi.org/10.1088/0031-9155/35/4/003
[10] Hedtjarn H, Carlsson G, Williamson J F. Accelerated Monte Carlo-based dose calculations for brachytherapy planning using correlated sampling[J]. Phys Med Biol, 2002, 47(3): 351-376.
url: http://dx.doi.org/10.1088/0031-9155/47/3/301
[11] Buckley L A, Kawrakow I, Rogers D W O. CSnrc: Correlated sampling Monte Carlo calculations using EGSnrc[J]. Med Phys, 2004, 31(12): 3425-3435.
url: http://dx.doi.org/10.1118/1.1813891
[12] 武祯, 李君利, 程建平. 一种改进的计算探测器校正因子的相关抽样方法[J]. 高能物理与核物理, 2006, 30(8): 771-775. WU Zhen, LI Junli, CHENG Jianping. An improved correlated sampling method for calculating correction factor of detector[J]. High Energy Physics and Nuclear Physics, 2006, 30(8): 771-775. (in Chinese)
[13] 许淑艳. 蒙特卡罗方法在实验核物理中的应用 [M]. 北京: 原子能出版社, 1996. XU Shuyan. Monte Carlo Method in Experimental Nuclear Physics [M]. Beijing: Atomic Energy Press, 1996. (in Chinese)
[14] 邱睿, 李君利, 曾志. 邮件辐照系统屏蔽的Monte Carlo计算[J]. 清华大学学报: 自然科学版, 2004, 44(3): 297-300. QIU Rui, LI Junli, ZENG Zhi. Monte Carlo calculation of the shielding of mail irradiation systems[J]. Journal of Tsinghua University: Science and Technology, 2004, 44(3): 297-300. (in Chinese)
[15] 王汝赡, 姜宏宇. 方向偏移法及其在光子输运模拟中的应用[J]. 核电子学与探测技术, 1998, 18(3): 177-181. WANG Rushan, JIANG Hongyu. Direction biasing method and its application in γ ray transportation simulation[J]. Nuctear Eleetronics & Detection Technology, 1998, 18(3): 177-181. (in Chinese)
[16] Olsher R H. A practical look at Monte Carlo variance reduction methods in radiation shielding[J]. Nuclear Engineering and Technology, 2006, 38(4): 225-230.
[17] MCNP Monte Carlo Team, X-5. MCNP5_RSICC_1.30, LA-UR-04.5921 [R]. Los Alamos, NM: Los Alamos National Laboratory, 2004.
[18] Hendricks J S, McKinney G W, Waters L S, et al. MCNPX, Version 2.5.3, LA-UR-04-0569 [R]. Los Alamos, NM: Los Alamos National Laboratory, 2004.
[19] Booth T E. A Sample Problem in Variance Reduction in MCNP, LA-10363-MS [R]. Los Alamos, NM: Los Alamos National Laboratory, 1985.
[20] Fassò A, Ferrari A, Ranft J, et al.FLUKA: Performances and applications in the intermediate energy range [C]//Proc 1st AEN/NEA Specialists' Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities (SATIF 1). Arlington, TX: OECD Documents, 1995: 287-304.
[21] Allison J, Amako K, Apostolakis J, et al.GEANT4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-277.
url: http://dx.doi.org/10.1109/TNS.2006.869826
[1] LI Ruiqi, HUANG Hong, ZHOU Rui. Resilience curve modelling of urban safety resilience[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd