Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (2) : 191-196     DOI:
Orginal Article |
Residual welding stresses in the pipe-bar joints of a rotary drilling rig
Haiyan ZHAO1(),Xingquan XU1,Xingzhe YU2,Xiaowu ZHU3
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. Beijing Sany Heavy Machinery Co., Ltd, Beijing 102206, China
3. ESI-Group (Beijing) Co., Ltd, Beijing 100080, China
Download: PDF(2141 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The drill rod is one of the most important components of a rotary drilling rig and it is highly stressed. The pipe-bar welded joints are most likely to be damaged. The welding of pipe-bar joints is simulated using the SYSWELD software to calculate the residual welding stresses for comparison with measured residual welding stresses by X-ray diffraction. The calculated results are in good agreement with the measured data. The welding speed is then changed to study its effect on the residual welding stresses. The results show that the maximum tensile stress exists at the heat affected zone. With the increase of welding speed, the maximum tangential compressive stress increases, but the maximum tensile stress has no significant change.

Keywords residual stress      rotary drilling rig      pipe-bar joint      finite element simulation     
ZTFLH:     
Fund: 
Issue Date: 15 February 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haiyan ZHAO
Xingquan XU
Xingzhe YU
Xiaowu ZHU
Cite this article:   
Haiyan ZHAO,Xingquan XU,Xingzhe YU, et al. Residual welding stresses in the pipe-bar joints of a rotary drilling rig[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 191-196.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I2/191
  
  
C Cr Mn Si S P
键条 0.14~0.19 0.80~1.10 1.00~1.30 ≤0.40 ≤0.035 ≤0.035
焊丝 0.085 0.41 1.54 0.11
管材 ≤0.20 ≤1.60 ≤0.55 ≤0.035 ≤0.035
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 刘文忠, 管佩先, 孙宽良. 旋挖钻机入岩能力简述[J]. 建设机械技术与管理, 2010(4): 69-72. LIU Wenzhong, GUAN Peixian, SUN Kuanliang. Discussion on the drilling rock capacity of rotary drilling rig[J]. Construction Machinery Technology & Management, 2010(4): 69-72. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-JCJX201004020.htm
[2] 康辉梅, 何清华, 朱建新. 旋挖钻机变幅机构的动力学建模与仿真[J]. 中南大学学报: 自然科学版, 2010, 41(2): 532-538. KANG Huimei, HE Qinghua, ZHU Jianxin. Dynamic modeling and simulation of mast link frame system of rotary drilling rig[J]. Journal of Central South University: Science and Technology, 2010, 41(2): 532-538. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZNGD201002028.htm
[3] 王振. 旋挖钻机在桥梁桩基础施工中的应用[J]. 科技传播, 2011(8): 173. WANG Zhen. Application of rotary drilling rig in bridge pile foundation construction[J]. Science and Technology Communication, 2011(8): 173. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-KJCB201116149.htm
[4] 刘晓敏. ZY-200型旋挖钻机钻挖系统动力学分析 [D]. 长春: 吉林大学, 2007. LIU Xiaomin. The Dynamic Analysis on Drilling System of ZY-200 Type Rotary Drilling Rig [D]. Changchun: Jilin University, 2007. (in Chinese)
url: http://cdmd.cnki.com.cn/Article/CDMD-10183-2007094983.htm
[5] 秦四成, 刘晓敏, 王雪莲, 等. NR22型旋挖钻机钻挖系统动力学分析[J]. 桥隧机械&施工技术, 2007(8): 70-72. QIN Sicheng, LIU Xiaomin, WANG Xuelian, et al. Dynamic analysis on drilling system of NR22 type rotary drilling rig[J]. Bridge and Tunnel Machinery & Construction Technology, 2007(8): 70-72. (in Chinese)
url: http://www.cqvip.com/QK/71135X/201107/26705647.html
[6] 方洪渊. 焊接结构学 [M]. 北京: 机械工业出版社, 2008. FANG Hongyuan. Mechanics of Welding Structure [M]. Beijing: Machinery Industry Press, 2008. (in Chinese)
[7] Ueda Y, Yamakawa T. Analysis of thermal elastic-plastic stress and strain during welding by finite element method[J]. Trans of Japan Welding Society, 1971(2): 90-100.
[8] 陈楚. 数值分析在焊接中的应用 [M]. 上海: 上海交通大学出版社, 1985. CHEN Chu. Applications of Numerical Analysis in Welding [M]. Shanghai: Shanghai Jiao Tong University Press, 1985. (in Chinese)
url: http://162.105.138.200/uhtbin/cgisirsi/x/0/0/5?searchdata1=^C1454935
[9] 鹿安理, 史清宇, 赵海燕, 等. 厚板焊接过程温度场、 应力场的三维有限元数值模拟[J]. 中国机械工程, 2001, 12(2): 183-186. LU Anli, SHI Qingyu, ZHAO Haiyan, et al.Three dimensional numerical simulation of temperature and stress distribution in welding of thick plate[J]. China Mechanical Engineering, 2001, 12(2): 183-186. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGJX200102019.htm
[10] 汪建华. 焊接数值模拟技术及其应用 [M]. 上海: 上海交通大学出版社, 2003. WANG Jianhua. Welding Numerical Simulation Technology and Its Application [M]. Shanghai: Shanghai Jiao Tong University Press, 2003. (in Chinese)
[11] 上田幸雄, 村川英一, 麻宁绪. 焊接变形和残余应力的数值计算方法与程序 [M]. 罗宇,王江超,译. 成都: 四川大学出版社, 2008. Ueda Y, Murakawa H, MA Ningxu. Welding Deformation and Residual Stress of Numerical Methods and Procedures [M]. LUO Yu, WANG Jiangchao, trans. Chengdu: Sichuan University Press, 2008. (in Chinese)
[12] LI Chaowen, WANG Yong, ZHAN Huanxiao, et al.Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing[J]. Materials and Design, 2010(31): 3366-3373.
[13] Khurram A, Shehzad K. FE simulation of welding distortion and residual stresses in butt joint using inherent strain[J]. International Journal of Applied Physics and Mathematics, 2012(2): 405-408.
[14] Mikami Y, Sogabe K, Hashimoto T, et al.Evaluation of residual stress distribution in Ni base alloy clad welds by numerical simulation and X-ray stress measurement[J]. Science and Technology of Welding and Joining, 2013(2): 114-119.
[15] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions, 1984, 15B(2): 299-305.
[16] 黄韬, 张铁虎. 喷丸残余应力及工艺参数优化[J]. 科学技术与工程, 2010, 10(21): 5145-5150. HUANG Tao, ZHANG Tiehu. Residual stress induced by shot peening and processing parameters optimization[J]. Science Technology and Engineering, 2010, 10(21): 5145-5150. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-KXJS201021004.htm
[17] 关桥. 钛合金薄壁焊接构件的残余应力、 变形和强度 [D]. 莫斯科: 莫斯科包曼高等工学院, 1963. GUAN Qiao. The Residual Stress, Deformation and Strength of Titanium Thin Plate Welded Components [D]. Moscow: Moscow Bauman Higher Institute of Technology, 1963. (in Chinese)
[1] ZHOU Wei, LI Min, QIU Mingjun, ZHANG Xilong, LIU Jiang, ZHANG Hongbo. Vehicle body panel thickness optimization by a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 523-532.
[2] HUANG Weican, JIANG Xiaohua, XUE Peng, LI Xinyang, SHEN Zhidong, SUN Yuguang. Conductor design in bipolar superconducting DC energy pipelines[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1715-1720.
[3] ZHANG Hongwei, GUI Liangjin, FAN Zijie. Simulations and experimental verification of esidual welding stresses in drive axle housings[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 116-124.
[4] LU Li, HU Mengjia, CAI Zhipeng, LI Kejian, WU Yao, PAN Jiluan. Residual stresses after on-line surfacing welding repairs on the flange surface of a nuclear grade pipe end[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 89-94.
[5] JIA Xiaohong, CHEN Huaming, LI Xinggen, WANG Yuming. Mechanical properties of a graphite gasket sealing interface[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 167-170.
[6] LI Yanjun, WU Aiping, LIU Debo, ZHAO Haiyan, ZHAO Yue, WANG Guoqing. Numerical simulations of welding residual stresses in VPTIG-welded joints of the 2219 aluminum alloy[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1037-1041,1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd