Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (2) : 207-211     DOI:
Orginal Article |
Electrical conductivity measurement method using square wave pulse excitation
Fan MENG,Yonggui DONG()
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
Download: PDF(1401 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

When a square wave pulsed signal is adopted as excitation to obtain electrical impedance information for a conductive medium, the amplitude decay of the higher harmonics in square wave spectrum can have a significant effect. Adding an inductor or capacitor to a first-order resistant-capacitive-type sensing system creates a second-order resonant element that creates a freely damped oscillating signal at both the rising and falling edges of the excitation. The excitation amplitude near the resonant frequency is, therefore, enhanced. The equivalent resistance in the resonant element can be obtained by measuring the first positive peak voltage of the freely damped signal at the falling edge of the pulse. Tests indicate that resistance measurements for frequencies from 30 kHz to 1 MHz can be implemented only by a fixed frequency square wave excitation signal generated by a digital circuit. This method can be used for conductivity measurements of conductive media, such as electrolyte solutions, water and human skin, using both wired and wireless transmitters.

Keywords square wave pulse      conductivity      free damping oscillation      peak detection     
ZTFLH:     
Fund: 
Issue Date: 15 February 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fan MENG
Yonggui DONG
Cite this article:   
Fan MENG,Yonggui DONG. Electrical conductivity measurement method using square wave pulse excitation[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 207-211.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I2/207
  
  
  
  
  
  
  
  
  
  
[1] Ma H, Lang J H, Slocum A H. Calibration-free measurement of liquid permittivity and conductivity using electrochemical impedance test cell with servomechanically adjustable cell constant[J]. IEEE Sensors Journal, 2009, 9(5): 515-524.
url: http://dx.doi.org/10.1109/JSEN.2009.2015401
[2] Casalbore-Miceli G, Yang M J, Li Y, et al.A polyelectrolyte as humidity sensing material: Influence of the preparation parameters on its sensing property[J]. Sensors and Actuators B: Chemical, 2006, 114(2): 584-590.
url: http://dx.doi.org/10.1016/j.snb.2005.05.023
[3] Zhang M, Hu C, Liu H, et al.A rapid-response humidity sensor based on BaNbO3nanocrystals[J]. Sensors and Actuators B: Chemical, 2009, 136(1): 128-132.
url: http://dx.doi.org/10.1016/j.snb.2008.09.021
[4] Possetti G R C, Kamikawachi R C, Prevedello C L, et al. Salinity measurement in water environment with a long period grating based interferometer[J]. Measurement Science & Technology, 2009, 20, 0340033.
[5] Tsamis E D, Avaritsiotis J N. Design of planar capacitive type sensor for “water content” monitoring in a production line[J]. Sensors and Actuators A: Physical, 2005, 118(2): 202-211.
url: http://dx.doi.org/10.1016/j.sna.2004.07.008
[6] Huang X, Yeo W, Liu Y, et al.Epidermal differential impedance sensor for conformal skin hydration monitoring[J]. Biointerphases, 2012, 7(1-4): 1-9.
[7] Hsu Y Y, Hoffman J, Ghaffari R, et al.Epidermal electronics: Skin sweat patch [C]//2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). Taipei, China, 2012: 228-231.
[8] Huang T, Chou J, Sun T, et al.A device for skin moisture and environment humidity detection[J]. Sensors and Actuators B: Chemical, 2008, 134(1): 206-212.
url: http://dx.doi.org/10.1016/j.snb.2008.04.030
[9] Qiao G, Wang W, Duan W, et al.Bioimpedance analysis for the characterization of breast cancer cells in suspension[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(8): 2321-2329.
url: http://dx.doi.org/10.1109/TBME.2012.2202904
[10] Mishra V, Bouyad H, Halter R J. Electrical impedance-based biopsy for prostate cancer detection [C]//2011 37th Annual Northeast Bioengineering Conference (NEBEC). Troy, 2011: 1-2.
[11] Birlea N M, Birlea S I, Culea E. The skin's electrical time constants [C]//IFMBE Proceedings. Cluj Napoca, 2011, 36: 160-163.
[12] Yamamoto Y, Isshiki H, Nakamura T. Instantaneous measurement of electrical parameters in a palm during electrodermal activity[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(2): 483-487.
url: http://dx.doi.org/10.1109/19.492772
[13] 董永贵, 孟凡. 电阻抗谱的分段测量方法及其实验研究 [C]//第9届全国信息获取与处理学术会议. 沈阳, 2011, 32(S12): 134-137. DONG Yonggui, MENG Fan. Segmented measurement method for electrical impedance spectroscopy and its experimental investigation [C]//The 9th National Conference on Information Acquisition and Processing. Shenyang, 2011, 32(S12): 134-137. (in Chinese).
url: http://cpfd.cnki.com.cn/Article/CPFDTOTAL-YQYB201108002091.htm
[14] Yamamoto T, Yamamoto Y. Analysis for change of skin impedance[J]. Medical & Biological Engineering & Computing, 1977, 15(3): 219-227.
[15] Radosavljevic G J, Zivanov L D, Smetana W, et al.A wireless embedded resonant pressure sensor fabricated in the standard LTCC technology[J]. IEEE Sensors Journal, 2009, 9(12): 1956-1962.
url: http://dx.doi.org/10.1109/JSEN.2009.2030974
[1] TANG Honglei, CHEN Ju, SHEN Chunying, ZHANG Ke, YAO Xinmei, RAN Qihua. Impacts of heterogeneity of saturated hydraulic conductivity on the shallow landslides on the Loess plateau[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 1946-1960.
[2] LIU Ziping, SUN Jun. An effective thermal conductivity model of composite plates with distributed inner heat sources[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 104-113.
[3] PEI Pucheng, LI Zizhao, REN Peng, CHEN Dongfang, WANG Xizhong. Advances in metal bipolar plates and coatings for PEM fuel cells[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1025-1038.
[4] REN Cheng, YANG Xingtuan, LI Congxin, SUN Yanfei, LIU Zhiyong. Modeling of the heat transfer characteristics of the effective thermal conductivity test facility for high temperature gas-cooled reactors[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(9): 991-997.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd