Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (2) : 212-216     DOI:
Orginal Article |
Optimization of spray gun speed for pipe painting robots
Yulong PAN1,2,Guolei WAN1,Li ZHU3,Yan CHEN1,Ken CHEN1()
1. Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
2. Huangpi Noncommissioned Officer School, Air Force Early Warning Academy, Wuhan 430019, China
3. Department of Manufacturing Engineering, Chengdu Aircraft Industrial (Group) Co., Ltd, Chengdu 610091, China
Download: PDF(1361 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Paint coating thickness uniformity is investigated with a double beta spray gun model to investigate the coating thickness distribution assuming that the robot spraying coating shape is oval. Then, the coating mechanism is analyzed for the spray gun model. The relationship between the coating thickness variation and the coating transfer efficiency is studied experimentally with a uniform gun motion speed. An optimal spray gun motion speed is found with the best results found for a constant ratio of the spray gun speed to the paint transfer efficiency. The experimental results indicate that the speed optimization method effectively improves the coating thickness uniformity.

Keywords robot      spray gun model      coating thickness uniformity      coating transfer efficiency      spray gun moving speed     
ZTFLH:     
Fund: 
Issue Date: 15 February 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yulong PAN
Guolei WAN
Li ZHU
Yan CHEN
Ken CHEN
Cite this article:   
Yulong PAN,Guolei WAN,Li ZHU, et al. Optimization of spray gun speed for pipe painting robots[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 212-216.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I2/212
  
  
  
  
  
  
  
[1] Seegmiller N, Franks R, Bailiff J. Precision Robotic Coating Application and Thickness Control Optimization for F-35 Final Finishes [R]. SAE 2009-01-3280. SAE 2009 Aero Tech Congress & Exhibition. Seattle, WA, USA, 2009.
[2] 周光华, 谭延江. 新型雷达吸波涂料涂装技术研究[J]. 表面技术, 2011, 1(2): 68-70. ZHOU Guanghua, TAN Yanjiang. Study on painting technology of the novel radar absorbing coating[J]. Surface Technology, 2011, 1(2): 68-70. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-BMJS201101022.htm
[3] 张明. 浅谈机器人喷涂的膜厚控制[J]. 现代涂料与涂装, 2006, 9(6): 31-33. ZHANG Ming. Brief introduction of film thickness control during paint spraying by robot[J]. Modern Paint & Finishing, 2006, 9(6): 31-33. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-XDTL200606010.htm
[4] 王国磊, 陈恳, 陈雁, 等. 变参数下的空气喷枪涂层厚度分布建模[J]. 吉林大学学报: 工学版, 2012, 1(1): 188-192. WANG Guolei, CHEN Ken, CHEN Yan, et al.Film thickness distribution model with variable parameters for air spray gun[J]. Journal of Jilin University: Engineering and Technology Edition, 2012, 1(1): 188-192. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-JLGY201201034.htm
[5] CHEN Heping, XI Ning. Automated tool trajectory planning of industrial robots for painting composite surfaces[J]. Adv Manuf Technol, 2008, 35: 680-696.
url: http://dx.doi.org/10.1007/s00170-006-0746-5
[6] 曾勇, 龚俊. 面向自然二次曲面的喷涂机器人喷枪轨迹优化[J]. 中国机械工程, 2011, 3(2): 282-290. ZENG Yong, GONG Jun. Trajectory optimization of spray painting robot for natural quadric surfaces[J]. China Mechanical Engineering, 2011, 3(2): 282-290. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGJX201103008.htm
[7] 陈伟, 赵德安, 梁震. 喷涂机器人的喷枪轨迹优化设计与实验[J]. 中国机械工程, 2011, 17(9): 2104-2108. CHEN Wei, ZHAO Dean, LIANG Zhen. Design of tool path planning of robotic spray painting and its experiments[J]. China Mechanical Engineering, 2011, 17(9): 2104-2108. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-ZGJX201117018.htm
[8] Freund E, Rokossa D, Rossmann J. Process-oriented approach to an efficient off-line programming of industrial robots [C]∥Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. Piscataway, NJ, USA: IEEE, 1998: 208-213.
[9] Suh S H, Woo I K, Noh S K. Development of an automatic trajectory planning system (ATPS) for spray painting robots [C]∥Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1991: 1948-1955.
[10] Balkan T, Arikan M A S. Surface and process modeling and off line programming for robotic spray painting of curved surfaces[J]. Journal of Robotic Systems, 2000, 17(9): 479-494.
url: http://dx.doi.org/10.1002/1097-4563(200009)17:9<479::AID-ROB3>3.0.CO;2-L
[11] Balkan T, Arikan M A S. Modeling of paint flow rate flux for circular paint sprays by using experimental paint thickness distribution[J]. Mechanics Research Communications, 1999, 26(5): 609-617.
url: http://dx.doi.org/10.1016/S0093-6413(99)00069-5
[12] 张永贵, 黄玉美, 高峰, 等. 喷漆机器人空气喷枪的新模型[J]. 机械工程学报, 2006, 42(11): 226-233. ZHANG Yonggui, HUANG Yumei, GAO Feng, et al.New model for air spray gun of robotic spray painting[J]. Chinese Journal of Mechanical Engineering, 2006, 42(11): 226-233. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-JXXB200611038.htm
[1] LI Jian, WANG Shenghai, LIU Jiang, GAO Yufu, HAN Guangdong, SUN Yuqing. Dynamic modeling and robust control of cable-driven cleaning robot for marine multi-curvature bulkhead[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 562-577.
[2] CHEN Yongcan, CHEN Jiajie, WANG Haoran, GONG Yu, FENG Yue, LIU Zhaowei, QI Ningchun, LIU Mei, LI Yonglong, XIE Hui. Key technology of underwater inspection robot system for large diameter and long headrace tunnel[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1015-1031.
[3] QI Ningchun, NIE Qiang, LAI Jitao, CHEN Yongcan, LI Yonglong. Key technology and practice of intelligent underwater inspection in multiple scenarios of hydropower station[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1124-1134.
[4] QIAN Yuyang, LU Sen, YANG Kaiming, ZHU Yu. Multi-locomotion mode human-robot interaction technology for self-paced treadmills[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 1961-1973.
[5] PAN Feiyu, JIA Yanbing, YANG Menghui, LÜ Yifei, ZHAO Jun, HAO Zhixiu, WANG Rencheng. Lower-extremity movement biomechanical characteristics during in-bed rehabilitation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 1984-1993.
[6] CHEN Shuqin, LI Tiemin. Assembly of spacecraft components based on adaptive compliance control[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1808-1819.
[7] FENG Xiaobing, WANG Jianjun, WANG Yongke, CHEN Suyun, LIU Aiping. Intelligent welding technology for large structures crawling robot[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1608-1625.
[8] JIANG Shuai, SONG Libin, CHEN Xiaoyong, ZHANG Peng, LIU Kecheng, CHANG Junhu. Special automatic spraying system for civil aircraft parts based on visual recognition[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1650-1657.
[9] LI Zhengqing, HOU Senhao, WEI Jinhao, TANG Xiaoqiang. Vision-based auto-calibration method for planar cable-driven parallel robot for warehouse and logistics tasks[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1508-1515.
[10] ZHANG Wen, DING Yulin, CHEN Yonghua, SUN Zhenguo. Autonomous positioning for wall climbing robots based on a combination of an external camera and a robot-mounted inertial measurement unit[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1524-1531.
[11] LIU Peng, QIAO Xinzhou. Stability sensitivity of a completely restrained 3-DOF cable-driven parallel robot with four long-span cables[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1548-1558.
[12] LIU Tianyun. 3D printing of large filled construction projects[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1281-1291.
[13] WANG Yutian, ZHANG Ruijie, WU Jun, WANG Jinsong. Evaluation of the dynamic performance fluctuations of a mobile hybrid spray-painting robot[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 971-977.
[14] LIU Zhi, CHEN Ken, XU Jing. Data-driven method for 6D robot pose estimation[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 391-399.
[15] MENG Qizhi, XIE Fugui, LIU Xinjun, YUAN Xin, XUE Long. Design of a high-speed and high-load parallel robot[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd