|
Guide |
|
Abstract This study focuses on the influence of key factors, such as solids circulation rate and the aeration rate, on the solids height in the standpipe of the recycling valve. A one-dimensional hydrodynamic model is developed based on the hydrodynamics of the gas-solid flow in the loop-seal and the standpipe. The predicted heights agree well with experimental data. Redistribution of the aeration ratio in the standpipe and the discharge chamber increases the solids height in the standpipe to adapt to increasing solids circulation rates and to balance the pressures in the circuit. The results also indicate that if the solids circulation rate is over a critical value, the recycling valve will lose its self-adaptability and the solids will rise out of the standpipe and into the cyclone separator. The self-adaptability can be enhanced and the stable operation range of the recycling valve can be extended by properly increasing the aeration rate. This model is useful for the design and optimization of circulating fluidized bed recycling valves with relatively short standpipes.
|
Keywords
circulating fluidized bed
recycling valve
one-dimensional hydrodynamic model
standpipe solids height
|
|
Fund: |
Issue Date: 15 February 2014
|
|
|
[1] |
Basu P, Cheng L. An analysis of loop seal operations in a circulating fluidized bed[J]. Chemical Engineering Research and Design, 2000, 78(7): 991-998.
url: http://dx.doi.org/10.1205/026387600528102
|
[2] |
张洪岩. 小型流化床锅炉回料系统常见问题分析[J]. 电站系统工程, 2010, 26(5): 74. ZHANG Hongyan. Analysis of common problems in small CFB return system[J]. Power System Engineering, 2010, 26(5): 74. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-DZXT201005031.htm
|
[3] |
孙继常, 何国光. 中小型高温绝CFB锅炉返料器开裂问题的探讨及对策[J]. 工业锅炉, 2010(4): 55-56. SUN Jichang, HE Guoguang. Discussion and countermeasu res on return-feeder cracking of small and medium size heat insulating CFB boiler[J]. Industrial Boiler, 2010(4): 55-56. (in Chinese)
|
[4] |
冯蘅. 卧式循环流化床部颗粒浓度分布研究 [D]. 北京: 清华大学, 2011. FENG Heng. The Research of the Particle Concentration Distribution in the Horizontal Circulating Fluidized Bed [D]. Beijing: Tsinghua University, 2011. (in Chinese)
|
[5] |
王庆功, 汪佩宁, 杨海瑞, 等. N 阀和 U 阀内流动结构比较的数值模拟[J]. 锅炉技术, 2013, 44(5): 22-26. WANG Qinggong, WANG Peining, YANG Hairui, et al.Comparison of the gas-solid flow characteristics between an N loop-seal and U loop-seal with numerical simulation[J]. Boiler Technology, 2013, 44(5): 22-26. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-GLJS201305005.htm
|
[6] |
李清海, 甘超, 冯蘅, 等. 卧式循环流化床回料器性能实验研究[J]. 燃烧科学与技术, 2013, 19(3): 1-7. LI Qinghai, GAN Chao, FENG Heng, et al.Experimental study on the performance of loop-seal in a horizontal circulating fluidized bed boiler[J]. Journal of Combustion Science and Technology, 2013, 19(3): 1-7. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-RSKX201303002.htm
|
[7] |
李清海, 周晓彬, 陈庚,等. 卧式循环流化床锅炉燃烧的数值模拟[J]. 清华大学学报: 自然科学版, 2013, 53(3): 44-48. LI Qinghai, ZHOU Xiaobin, CHEN Geng, et al.Numerical investigation of the flow and combustion in a horizontal circulating fluidized bed boiler[J]. Journal of Tsinghua University : Science and Technology, 2013, 53(3): 44-48. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-QHXB201303012.htm
|
[8] |
JI Xuanyu, LU Xiaofeng, HE Honghao. Study on the gas-solid flow and heat transfer characteristics of evaporating recycle valve[J]. Powder Technology, 2012, 228: 219-227.
url: http://dx.doi.org/10.1016/j.powtec.2012.05.019
|
[9] |
Basu P, Butler J. Studies on the operation of loop-seal in circulating fluidized bed boilers[J]. Applied Energy, 2009, 86(9): 1723-1731.
url: http://dx.doi.org/10.1016/j.apenergy.2008.11.024
|
[10] |
Kim S W, Kim S D. Effects of particle properties on solids recycle in loop-seal of a circulating fluidized bed[J]. Powder Technology, 2002, 124(1/2): 76-84.
url: http://dx.doi.org/10.1016/S0032-5910(01)00472-7
|
[11] |
Lim K S, Peeler P, Close R, et al.Estimation of Solids Circulation Rate in CFB from Pressure Loop Profiles[M]. Werther J, ed. Circulating Fluidized Bed Technology VI. Frankfurt am Main, Germany: DECHEMA, 1999: 819-824.
|
[12] |
杨雪平. CFB炉膛风帽区域与回料阀内两相流动特性的研究 [D]. 上海: 上海交通大学, 2009. YANG Xueping. Research on Characteristics of Gas-Solid Flow in Air Nozzle Area in the Furnace and U-Valve in CFB Boiler [D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
url: http://cdmd.cnki.com.cn/Article/CDMD-10248-2009225464.htm
|
[13] |
彭莉, 李洪钟, 朱庆山. U型阀结构下颗粒流态化排料的数学模型[J]. 过程工程学报, 2012, 12(3): 382-387. PENG Li, LI Hongzhong, ZHU Qingshan. Hydrodynamic modeling on fluidization discharging of particles under U-shape valve structure[J]. The Chinese Journal of Process Engineering, 2012, 12(3): 382-387. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-HGYJ201203005.htm
|
[14] |
LI Changjin, LI Hongzhong, ZHU Qingshan. A hydrodynamic model of loop-seal for a circulating fluidized bed[J]. Powder Technology, 2014, 252: 14-19.
url: http://dx.doi.org/10.1016/j.powtec.2013.10.029
|
[15] |
李洪钟, 郭慕孙. 非流态化气固两相流: 理论及应用 [M]. 北京: 北京大学出版社, 2002. LI Hongzhong, Kwauk Mooson. Non Fluidized Gas-Solids Fluidization: Theory and Application [M]. Beijing: Peking University Press, 2002. (in Chinese)
|
[16] |
Rhodes M. Introduction to Particle Technology[M]. Chichester, UK: John Wiley & Sons, 2008.
|
[17] |
Klinzing G E, Rizk F, Marcus R, et al.Pneumatic Conveying of Solids: A theoretical and Practical Approach[M]. Dordrecht : Springer, 2010.
|
[18] |
Johanson K. Rathole stability analysis for aerated powder materials[J]. Powder Technology, 2004, 141(1/2): 161-170.
url: http://dx.doi.org/10.1016/j.powtec.2004.02.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|