Orginal Article |
|
|
|
|
|
Biofouling growth model and force analysis |
Qianpeng YANG1,Xiaodong CHEN2,Lei TIAN1,Lin SHI1( ) |
1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
2. Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China |
|
|
Guide |
|
Abstract Biofouling on heat exchanger surfaces reduces the heat transfer rate and the system security. Thus, more investigations are needed on biofouling growth mechanisms and the forces acting on the biofouling. This study uses a three dimensional cellular automata model to simulate biofouling growth. Reciprocal inhibition between different bacteria strains is also simulated. A shape factor concept is then used to describe the various biofouling shapes to analyze the forces on the biofouling. The cellular automata model simulates Bacillus subtilis and Aeromonas ichthiosmia as typical heat exchanger bacteria strains. The model simulates the biofouling growth and reciprocal inhibition to show that the heat exchanger biofouling inhibition should focus on Bacillus subtilis. The shape factors for three typical shapes used in this work accurately model the biofouling shapes. The shape factors simplify the force analyses and are useful for comparing different biofouling shapes.
|
Keywords
energy management and saving
biofouling
cellular automata model
shape factor
|
|
Fund: |
Issue Date: 15 February 2014
|
|
|
[1] |
TIAN Lei, CHEN Xiaodong, YANG Qianpeng, et al.Effect of silica dioxide particles on the evolution of biofouling by Bacillus subtilis in plate heat exchangers relevant to a heat pump system used with treated sewage[J].Chemical Engineering Journal, 2012, 188: 47-56.
url: http://dx.doi.org/10.1016/j.cej.2012.02.004
|
[2] |
TIAN Lei, CHEN Xiaodong, YANG Qianpeng, et al.Effect of calcium ions on the evolution of biofouling by Bacillus subtilis in plate heat exchangers simulating the heat pump system used with treated sewage in the 2008 Olympic Village[J]. Colloids and Surfaces B: Biointerfaces, 2012, 94: 309-316.
url: http://dx.doi.org/10.1016/j.colsurfb.2012.02.015
|
[3] |
史琳, 昝成, 杨文言. 城镇二级出水换热表面混合污垢的成分及形貌[J]. 清华大学学报: 自然科学版, 2009, 49(2): 236-239. SHI Lin, ZAN Cheng, YANG Wenyan. Composition and morphology of composite fouling by municipal secondary effluent on heat transfer surfaces[J]. J Tsinghua Univ: Sci and Tech, 2009, 49(2): 236-239. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-QHXW200902019.htm
|
[4] |
TIAN Lei, CHEN Xiaodong, YANG Qianpeng, et al.Interaction effects of silica dioxide particles and calcium ions on the evolution of biofouling in plate heat exchangers relevant to a heat pump heat recovery system from treated sewage[J]. International Journal of Materials and Product Technology, 2012, 44(1/2): 67-76.
url: http://dx.doi.org/10.1504/IJMPT.2012.048191
|
[5] |
Eberl H J, ParkerD F, Vanloosdrecht M C. A new deterministic spatiotemporal continuum model for biofilm development[J]. Computational and Mathematical Methods in Medicine, 2001, 3(3): 161-175.
|
[6] |
Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36: 2711-2720.
url: http://dx.doi.org/10.1016/S0043-1354(01)00413-4
|
[7] |
Laspidou C S, Rittmann B E. Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36: 1983-1992.
url: http://dx.doi.org/10.1016/S0043-1354(01)00414-6
|
[8] |
Eberl H J, Khassehkhan H, Demaret L. A mixed-culture model of a probiotic biofilm control system[J]. Computational and Mathematical Methods in Medicine, 2010, 11(2): 99-118.
url: http://dx.doi.org/10.1080/17486700902789355
|
[9] |
Picioreanu C, Kreft J U, Van Loosdrecht M C. Particle-based multidimensional multispecies biofilm model[J]. Applied and Environmental Microbiology, 2004, 70(5): 3024-3040.
url: http://dx.doi.org/10.1128/AEM.70.5.3024-3040.2004
|
[10] |
Habimana O, Guillier L, Kulakauskas S, et al.Spatial competition with Lactococcus lactis in mixed-species continuous-flow biofilms inhibits Listeria monocytogenes growth[J]. Biofouling, 2011, 27(9): 1065-1072.
url: http://dx.doi.org/10.1080/08927014.2011.626124
|
[11] |
Hao S, Moran B, Chopp D. Biofilm growth: Perspectives on two-phase mixture flow and fingerings formation [C]// IUTAM Symposium on Mechanics and Reliability of Actuating Materials. New York, NJ: Springer Press, 2006: 273-290.
|
[12] |
Rice A R, Hamilton M A, Camper A K. Movement, replication, and emigration rates of individual bacteria in a biofilm[J]. Microbial Ecology, 2003, 45: 163-172.
url: http://dx.doi.org/10.1007/s00248-002-1028-x
|
[13] |
杨倩鹏, 陈晓东, 田磊, 等. 不同营养下混合菌种微生物污垢生长机理与交互作用[J]. 化工学报, 2013, 64(3): 1036-1041. YANG Qianpeng, CHEN Xiaodong, TIAN Lei, et al.Growth and interaction mechanism of multi-strain biofouling under different nutrient levels[J]. CIESC Journal, 2013, 64(3): 1036-1041. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-HGSZ201303036.htm
|
[14] |
Ivleva N P, Wagner M, Horn H, et al.Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy[J]. Analytical and Bioanalytical Chemistry, 2009, 393: 197-206.
url: http://dx.doi.org/10.1007/s00216-008-2470-5
|
[15] |
YANG Qianpeng, Wilson D I, CHEN Xiaodong, et al.Experimental investigation of interactions between the temperature field and biofouling in a synthetic treated sewage stream[J]. Biofouling, 2013, 29(5): 513-523.
url: http://dx.doi.org/10.1080/08927014.2013.790014
|
[16] |
Dobretsov S, Teplitski M, Paul V. Mini-review: Quorum sensing in the marine environment and its relationship to biofouling[J]. Biofouling, 2009, 25(5): 413-427.
url: http://dx.doi.org/10.1080/08927010902853516
|
[17] |
TIAN Lei, YANG Qianpeng, LI Minzhi, et al. Reuse of thermal energy in municipal reclaimed water: Assessment for transmission distance [J]. Applied Mechanics and Materials, 2012, 148/149: 883-886.
|
[18] |
Abe Y, Polyakov P, Skali-Lami S, et al.Elasticity and physicochemical properties during drinking water biofilm formation[J]. Biofouling, 2011, 27(7): 739-750.
url: http://dx.doi.org/10.1080/08927014.2011.601300
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|