Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (2) : 253-258     DOI:
Orginal Article |
Modified rigid finite element method for wind turbine dynamics
Fenghao ZHANG,Rong HE()
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1440 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The two-stage-division method used by the rigid finite element method has some defects that restrict analyses for wind turbine dynamics. A modified method is developed which replaces the two-stage-division method by distributing the spring damping elements as in the real structure. The action range of the spring damping element is also adjusted. The displacement and frequency results computed by the modified method are very close to precise results. The modified method is flexible with easily applied boundary conditions, so this method can be widely used. A wind turbine dynamic model developed using the modified method gives accurate results.

Keywords wind turbine      dynamic      flexible      rigid finite element      modification     
ZTFLH:     
Fund: 
Issue Date: 15 February 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fenghao ZHANG
Rong HE
Cite this article:   
Fenghao ZHANG,Rong HE. Modified rigid finite element method for wind turbine dynamics[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 253-258.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I2/253
  
  
  
  
  
  
  
方法 精确解/(10-4m) 5段 10段 20段
位移最大值/(10-4m) 误差/% 位移最大值/(10-4m) 误差/% 位移最大值/(10-4m) 误差/%
改进前
4.042
3.963 -1.95 3.972 -1.73 3.997 -1.11
改进后 4.057 0.37 4.050 0.19 4.049 0.148
  
频率/Hz
1阶 2阶 3阶
精确解 14.47 90.69 254.00
改进方法 14.50 90.70 253.89
误差/% 0.206 0.013 -0.023
  
  
  
风力机部件 类型 BModes/Hz 本文模型/Hz
1阶弯振 0.42 0.40

塔架
2阶弯振 2.37 2.33
3阶弯振 5.10 4.98
1阶扭振 1.95 1.84
1阶挥舞 1.21 1.20

叶片
2阶挥舞 1.83 1.83
1阶摆振 3.72 3.70
2阶摆振 6.13 6.10
  
[1] Mostafaeipour A. Productivity and development issues of global wind turbine industry[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 1048-1058.
url: http://dx.doi.org/10.1016/j.rser.2009.10.031
[2] Tempel J, Molenaar D P. Wind turbine structural dynamics: A review of the principles for modern power generation, onshore and offshore[J]. Wind Engineering, 2002, 26(4): 211-222.
url: http://dx.doi.org/10.1260/030952402321039412
[3] Larsen J W, Nielsen S R K. Non-linear dynamics of wind turbine wings[J]. International Journal of Non-Linear Mechanics, 2006, 41(5): 629-643.
url: http://dx.doi.org/10.1016/j.ijnonlinmec.2006.01.003
[4] Rasmussen F, Hansen M H. Present status of aeroelasticity of wind turbines[J]. Wind Energy, 2003, 6(3): 213-228.
url: http://dx.doi.org/10.1002/we.98
[5] Ahlstrom A. Aeroelastic Simulation of Wind Turbine Dynamics [D]. Stockholm: Royal Institute of Technology, 2005.
[6] Lee D. Multi-Flexible-Body Analysis for Application to Wind Turbine Control Design [D]. Atlanta, GA: Georgia Institute of Technology, 2003.
[7] Peeters J. Simulation of Dynamic Drive Train Loads in a Wind Turbine [D]. Leuven: Katholieke University, 2006.
[8] Shabana A A. Dynamics of Multibody Systems [M]. Cambridge: Cambridge University Press, 2005.
[9] Wittbrodt E, Adamiec-Wójcik I. Dynamics of Flexible Multibody Systems: Rigid Finite Element Method[M]. Berlin: Springer, 2006.
[10] Wittbrodt E, Szczotka M, Wojciech S, et al.Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures[M]. Berlin: Springer, 2013.
[11] Wojciech S, Adamiec-Wojcik I. Nonlinear vibrations of spatial viscoelastic beams[J]. Acta Mechanica, 1993, 98: 15-25.
url: http://dx.doi.org/10.1007/BF01174290
[12] Wojciech S, Adamiec-Wojcik I. Experimental and computational analysis of large amplitude vibrations of spatial viscoelastic beams[J]. Acta Mechanica, 1994, 106: 127-136.
url: http://dx.doi.org/10.1007/BF01213558
[13] Wittbrodt E, Wojciech S. Application of rigid finite element method to dynamic analysis of spatial systems[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(4): 891-898.
url: http://dx.doi.org/10.2514/3.21474
[14] Szczotka M. A modification of the rigid finite element method and its application to the J-lay problem[J].Acta Mechanica, 2011, 220: 183-198.
url: http://dx.doi.org/10.1007/s00707-011-0470-6
[15] Adamiec-Wojcik I. Optimization problem for planning a trajectory of a manipulator with a flexible link[J].Advances in Manufacturing Science and Technology, 2010, 34(4): 87-98.
[16] Szcztka M, Wojciech S. Application of joint coordinates and homogeneous transformations to modelling of vehicle dynamics[J]. Nonlinear Dynamics, 2008, 52: 377-393.
url: http://dx.doi.org/10.1007/s11071-007-9286-2
[17] Urbas A, Szczotka M, Maczynski A. Analysis of movement of the BOP crane under sea weaving conditions[J]. Journal of Theoretical and Applied Mechanics, 2010, 48(3): 677-701.
[18] Szczotka M. Dynamic analysis of an offshore pipe laying operation using the reel method[J]. Acta Mechanica Sinica, 2011, 27(1): 44-55.
url: http://dx.doi.org/10.1007/s10409-011-0400-9
[19] Meirovitch L. Elements of Vibration Analysis[M]. New York, NJ: McGraw-Hill, 1975.
[20] Shames I H, Pitarresi J M. Introduction to Solid Mechanics[M]. Upper Saddle River, NJ: Prentice-Hall, 2000.
[1] GUO Weicheng, LIAO Yuantai, ZHANG Hongyu. Research progress in lubricating hydrogel coatings[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 381-392.
[2] SUN Qichao, SUN Zhiwei, WU Lianying, ZHOU Xin. Optimization of integrated concentrating solar power-desalination systems based on a flexible design[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 528-537.
[3] LI Jian, WANG Shenghai, LIU Jiang, GAO Yufu, HAN Guangdong, SUN Yuqing. Dynamic modeling and robust control of cable-driven cleaning robot for marine multi-curvature bulkhead[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 562-577.
[4] LUO Rongkang, YU Zhihao, WU Peibao, HOU Zhichao. Dynamic analysis of flexible coupling for an electric wheel with a suspended drive motor[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 25-32.
[5] YANG Qiongfang, HUANG Xiuchang, LI Ye. Integrated design of ship propellers considering hydrodynamics, cavitation, and low noise[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 75-89.
[6] YAN Zefan, LIU Rongzheng, LIU Bing, SHAO Youlin, LIU Malin. Molecular dynamics simulation of sintering behavior of SiC nanocoated particles[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1297-1308.
[7] LIU Kang, LIU Zhaowei, CHEN Yongcan, MA Fangping, WANG Haoran, HUANG Huibao, XIE Hui. Dynamic Bayesian network model for the safety risk evaluation of a diversion tunnel structure[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1041-1049.
[8] FU Wen, WEN Hao, HUANG Junhui, SUN Binxuan, CHEN Jiajie, CHEN Wu, FENG Yue, DUAN Xingguang. Adaptive sliding mode control of underwater manipulator based on nonlinear dynamics model compensation[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1068-1077.
[9] WANG Haoran, XIE Hui, CHEN Yongcan, LIU Kang, LI Zhengwen, LI Yonglong. Intelligent detection and numerical simulation analysis of concrete abrasion of astilling basin floor[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1095-1103.
[10] GAO Qiaodong, LEI Fulin, ZHANG Zhedian. Automatic generation method of a chemical reactor network for predicting NOx emissions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 612-622.
[11] FENG Rui, LIU Yu, ZHANG Zhang, HE Qingsong, WU Zhuo, TENG Haishan, JIA He. Numerical study on the aerodynamics of a rocket fairing half in the continuum regime of the reentry process[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 414-422.
[12] ZHANG Qingsong, JIA Shan, CHEN Jinbao, XU Yingshan, SHE Zhiyong, CAI Chengzhi, PAN Yihua. Configuration design and topology optimization of a single wing for the hybrid unmanned aerial vehicle[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 423-432.
[13] LI Dongxing, HOU Senhao, SUN Haining, LI Fan, TANG Xiaoqiang. Test equipment for a parachute tear-band to measure the cable force dynamics[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 294-301.
[14] LIU Yu, ZHAO Miao, ZHANG Zhang, JIA He, HUANG Wei. Simulation of thermochemical nonequilibrium flow around a conical deceleration structure[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 386-393,413.
[15] GAO Chang, LI Yanjun, YU Li, NIE Shunchen. Effect of sail fullness on the aerodynamic performance of ringsail parachutes[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 322-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd