Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (2) : 259-263     DOI:
Orginal Article |
Wavelet de-noising method with threshold selection rules based on SNR evaluations
Jianjun ZHONG1,2,Jian SONG1(),Changxi YOU1,Xinqiao YIN2
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
2. Military Transportation University, Tianjin 300161, China
Download: PDF(1269 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Acceleration signals from automotive automatic transmission bench tests need to be de-noised. Wavelet threshold de-noising requires a relatively small amount of computations and has better filtering. However, different wavelet basic functions and different threshold rules produce different noise signal de-noising results. Optimal matching parameters are found for simulated signals that approximate an observed signal through de-noising tests using the signal-to-noise ratio (SNR) and root-mean-square error (RMSE) of the de-noised signal as the evaluation index. The results are combined with the angular acceleration signal de-noise processing obtained in a bench test for the filtering. The wavelet transform de-noising is efficient, stable and not easily distorted when dealing with noise signals. The effect of the wavelet de-noising noisy signal can be evaluated using SNR combined with RMSE for the objective evaluation. Different signals may need to use different wavelet basis functions with different threshold rules.

Keywords bench      automatic transmission      denoising      threshold rule      signal-to-noise ratio (SNR)      root-mean-square error (RMSE)      wavelet basis function     
ZTFLH:     
Fund: 
Issue Date: 15 February 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianjun ZHONG
Jian SONG
Changxi YOU
Xinqiao YIN
Cite this article:   
Jianjun ZHONG,Jian SONG,Changxi YOU, et al. Wavelet de-noising method with threshold selection rules based on SNR evaluations[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 259-263.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I2/259
  
  
  
阈值规则 SNR RMSE 去噪排序
无偏式 23.838 5 6.765 5 4
启发式 25.186 5 5.793 0 2
固定式 25.186 5 5.793 0 1
极值式 25.062 8 5.876 0 3
  
阈值规则 SNR RMSE 去噪排序
无偏式 24.654 9 6.158 6 4
启发式 25.289 1 5.724 9 1
固定式 25.288 3 5.725 4 2
极值式 25.163 2 5.808 5 3
  
阈值规则 SNR RMSE 去噪排序
无偏式 24.473 7 6.288 4 4
启发式 25.291 9 5.723 1 2
固定式 25.300 3 5.717 5 1
极值式 25.109 3 5.844 7 3
  
阈值规则 SNR RMSE 去噪排序
无偏式 24.711 1 6.118 8 4
启发式 25.406 3 5.648 2 2
固定式 25.411 5 5.644 8 1
极值式 25.148 7 5.818 2 3
  
阈值规则 SNR RMSE 去噪排序
无偏式 24.974 2 5.936 3 4
启发式 25.399 8 5.652 4 1
固定式 25.375 4 5.668 3 2
极值式 25.192 8 5.788 8 3
  
阈值规则 SNR RMSE 去噪排序
无偏式 25.358 2 5.679 6 3
启发式 25.437 7 5.627 8 2
固定式 25.437 8 5.627 8 1
极值式 25.293 2 5.722 2 4
  
阈值规则 SNR RMSE 去噪排序
无偏式 24.818 4 6.043 7 4
启发式 25.469 7 5.607 2 2
固定式 25.480 1 5.600 4 1
极值式 25.258 3 5.745 3 3
  
基函数 阈值规则 SNR RMSE
sym2 固定式 25.186 5 5.793 0
sym3 启发式 25.289 1 5.724 9
sym4 固定式 25.300 3 5.717 5
sym5 固定式 25.411 5 5.644 8
sym6 启发式 25.399 8 5.652 4
sym7 固定式 25.437 8 5.627 8
sym8 固定式 25.480 1 5.600 4
  
  
  
[1] Habeebullah A, ZHENG Quan, CHUNG Woowon. A Closed-Loop Drive-Train Model for HIL Test Bench [R]. SAE 2009-01-1139. 2009.
[2] Cavina N, Olivi D, Corti E, et al. Development and Implementation of Hardware in the Loop Simulation for Dual Clutch Transmission Control Units [R]. SAE 2013-01-0816. 2013.
[3] 马晓岩, 李广柱, 张贤达. 基于小波变换的雷达信噪比改善分析[J]. 清华大学学报: 自然科学版, 2003, 43(3): 422-424. MA Xiaoyan, LI Guangzhu, ZHANG Xianda. Improved radar signal to noise ratio method based on wavelet transforms[J]. Journal of Tsinghua University: Science and Technology, 2003, 43(3): 422-424. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-QHXB200303036.htm
[4] 魏云冰, 黄进, 黄建华. 基于小波包变换的电机测试信号去噪处理[J]. 电工技术学报, 2001, 16(5): 64-67. WEI Yunbing, HUANG Jin, HUANG Jianhua. Removing noises from signals of motor measurement by wavelet packet[J].Transactions of China Electrotechnical Society, 2001, 16(5): 64-67. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-DGJS200105013.htm
[5] 李中伟, 程丽, 佟为明. Symlets小波幅值算法研究[J]. 电力自动化设备, 2009, 29(3): 65-68. LI Zhongwei, CHENG Li, TONG Weiming. Study of Symlets wavelet amplitude algorithm[J]. Electric Power Automation Equipment, 2009, 22(1): 65-68. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-DLZS200903017.htm
[6] 吴昊, 鲁周迅. Symlets小波和子空间联合增强下的语音识别[J]. 计算机工程与应用, 2011, 47(5): 141-145. WU Hao, LU Zhouxun. Speech recognition based on combined enhancement of Symlets wavelet and subspace[J]. Computer Engineering and Applications, 2011, 47(5): 141-145. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-JSGG201105044.htm
[7] 谢杰成, 张大力, 徐文立. 一种小波去噪方法的几点改进[J]. 清华大学学报: 自然科学版, 2002, 42(9): 1269-1272. XIE Jiecheng, ZHANG Dali, XU Wenli. Several improvements for a wavelet denoising method[J]. Journal of Tsinghua University: Science and Technology, 2002, 42(9): 1269-1272. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-QHXB200209034.htm
[8] 孙延奎. 小波分析及其应用 [M]. 北京: 机械工业出版社, 2005. SUN Yankui. Wavelet Analysis and Application [M]. Beijing: Machinery Industry Press, 2005.(in Chinese)
[9] 邱继征. 小波分析原理 [M]. 北京: 科学出版社, 2009. QIU Jizheng. The Principle of Wavelet Analysis [M]. Beijing: Science Press, 2009. (in Chinese)
[10] 樊启斌. 小波分析[M]. 武汉: 武汉大学出版社, 2008. FAN Qibin. Wavelet Analysis [M]. Wuhan: Wuhan University Press, 2008. (in Chinese)
[11] 张臣国. 小波分析在信号降噪中的应用研究 [D]. 成都: 电子科技大学, 2012. ZHANG Chenguo. Application of Wavelet Analysis in Signal Denoising [D]. Chengdu: University of Electronic Science and Technology, 2012. (in Chinese)
url: http://cdmd.cnki.com.cn/Article/CDMD-10614-1012470841.htm
[12] 冯有前. 数值分析[M]. 北京:清华大学出版社, 2005. FENG Youqian. Numerical Analysis [M]. Beijing: Tsinghua University Press, 2005.(in Chinese)
[13] 齐翠丽. 基于小波阈值法和模极大值法的语音去噪算法研究 [D]. 秦皇岛: 燕山大学, 2012. QI Cuili. The Research of Speech Degoising Algorithm Based on Wavelet Threshold and the Modulus Maximum Value [D]. Qinhuangdao: Yanshan University, 2012. (in Chinese)
url: http://cdmd.cnki.com.cn/Article/CDMD-10216-1013009900.htm
[14] 孙斌, 周云龙, 关跃波, 等. 气液两相流压差波动信号小波去噪中阈值规则的确定[J]. 信号处理, 2006, 22(1): 96-99. SUN Bin, ZHOU Yunlong, GUAN Yuebo, et al.Confirmation of threshold rule in signal denosing of gas-liquid two-phase flow differential pressure fluctuation using wavelet transform[J]. Signal Processing, 2006, 22(1): 96-99. (in Chinese)
url: http://d.wanfangdata.com.cn/Conference_5206006.aspx
[1] YANG Zhiyong, WANG Ziming, YE Shanshan, LI Zhiqiang, LI Weijing. Braking noise characteristics and a simulation analysis method based on a multiscale braking test[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1626-1639.
[2] GAO Xiang, WANG Fang, XIAO Yangchun, WU Zhaoyang, JIN Jie. Development and verification of a fuel slinger atomization test bench[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 212-218.
[3] CHEN Changkun, XU Tong, SHI Congling, ZHAO Xiaolong, ZHANG Yulun. Bench-scale experimental study of the deflagration overpressure of a flammable liquid vapor in a tunnel[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 278-284.
[4] LI Fei, SONG Jian, FANG Shengnan, LU Zhenghong, NGUYEN Truong Sinh. Dynamic torque characteristics of the band brake of a continuous automatic transmission[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 124-131.
[5] ZHANG Zuo, LU Xinhai, LUO Xiang, ZHOU Min, JIN Gui. 3-D-visualization and spatial morphology analysis of urban benchmark land prices for residential use: A case study of Wuhan, China[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 941-952.
[6] NGUYEN Truong Sinh, SONG Jian, FANG Shengnan, SONG Haijun, TAI Yuzhuo, LI Fei. Simulation and experimental demonstration of a seamless two-speed automatic mechanical transmission for electric vehicles[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1106-1113.
[7] Xudong XIE,Zhaojun YUAN,Wei GUO,Yi ZHANG. Color face image denoising based on noisy pixel detection and neighborhood weight interpolation[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(4): 536-539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd