Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (3) : 309-313     DOI:
Orginal Article |
Potential assessment of cleaner production in China's ammonia industry
Bing ZHU(),Xunhuan CHEN,Wenjun ZHANG,Shanying HU,Yong JIN
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1029 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
ZTFLH:     
Fund: 
Issue Date: 15 March 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bing ZHU
Xunhuan CHEN
Wenjun ZHANG
Shanying HU
Yong JIN
Cite this article:   
Bing ZHU,Xunhuan CHEN,Wenjun ZHANG, et al. Potential assessment of cleaner production in China's ammonia industry[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 309-313.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I3/309
  
工艺名称 2010年产
量/(104t)
能耗强度/
(kgce·t-1)
废水产生强
度/(m3·t-1)
COD产生强
度/(kg·t-1)
氨氮产生强
度/(kg·t-1)
SO2产生强
度/(kg·t-1)
固废产生强度/
(kg·t-1)
1) 连续加压天然气转化 872 1 032~1 120 5~30 0.06~4.50 0.30~3.00 0.03~0.04 0.50~0.75
2) 天然气常压间歇转化 271 1 054~1 400 10~30 0.06~2.10 0.30~3.00 0.04~0.05 0.55~0.75
3) 水煤浆/干煤粉加压气化 522 1 330~1 650 1.3~5.0 0.25~1.10 0.15~0.48 0.05~0.20 0.56~1.10
4) 大型固定床间歇煤气化 1 545 1 184~1 371 5~10 0.25~1.10 0.15~0.48 1.30~3.00 0.85~1.49
5) 中型固定床间歇煤气化 679 1 100~1 700 5~20 0.50~3.00 0.35~2.00 1.30~3.00 0.85~1.49
6) 小型固定床间歇煤气化 1 216 1 100~1 700 10~40 1.00~6.00 0.40~3.50 1.30~3.00 0.86~3.29
7) 重油部
分氧化
68 6.7~19.0 0.44~0.57 0.54~1.02
8) 焦炉气催化部分氧化 47 989~1 400 5~30 0.06~4.50 0.30~3.00
  
技术类别 技术名称 技术效果和“十二五”预计普及率增量
源头
控制
连续加压
煤气化技术
1. 多喷嘴对置式水煤浆气化技术
2. 经济型气流床分级气化技术
3. HT-L航天炉粉煤加压气化技术
相对于固定床间歇煤气化技术,提高原料及能源利用率,减少固废的产生,避免气化过程中含硫化物、 CO的废气排放(具体参数详见表3的相关工艺信息)。(2%~5%)
废水源头
削减技术
4. 造气循环冷却水微涡流塔板澄清技术
5. 碱液法半水煤气脱硫技术
6. 反渗透制脱盐水技术等
实现造气循环冷却水系统的闭路循环,减少了原料气净化环节的三废排放,多项技术共同作用下,可实现废水减排11.5 m3/t, COD减排1.8 kg/t, 氨氮减排1.3 kg/t。(8%)
过程
减量
气体深度
净化技术
7. 常温精脱硫技术 解决氨合成催化剂中毒问题,增加寿命,减少废催化剂约0.25 kg/t。(12%)
原料气微量
碳脱除技术
8. 醇烃化净化技术
9. 全自热非等压醇烷化净化技术
替代落后的铜洗法气体净化技术,将CO、 CO2等废气转化为甲醇产品,减少稀氨水排放,节能38~133 kgce/t。(3%~13%)
先进氨合
成技术
10. 轴径向低阻力大型氨合成反应技术 生产能力提高15%~30%, 电耗下降100 kWh/t, 煤耗下降110 kg/t。(3%)
11. 氨合成塔内件技术 缩短催化剂的还原时间,减少还原期间废气的产生,保证催化剂的高活性,多回收反应热1.8×105~2.0×105 kcal/t(1 cal » 4.186 J), 减少冷却水30~40 m3。(5%)
先进换
热技术
12. 蒸发式冷却器技术 强化传热传质过程,可节电50%, 减少循环水冷却量50%以上。(3%)
末端
利用
废气固废
利用技术
13. 三废混燃炉技术 适用于固定床间歇煤气化工艺,可减少吹风气、造气炉渣、造气除尘器细灰的排放。提高产量3%~5%, 节能200~255 kgce/t。(10%)
14. 氨法烟气脱硫技术 减少氨氮、锅炉烟气的SO2排放(具体参数详见表3的相关工艺信息), 得到副产物硫酸铵。(3%)
  
能耗/(104 tce) 废水/(108 m3) COD/(104 t) 氨氮/(104 t) SO2/(104 t) 固废/(104 t)
情景1 产生量 8 493.8 8.4 10.7 6.8 8.9 7.5
削减量 -1 174.1 -1.2 -1.5 -0.9 -1.2 -1.0
情景2 产生量 7 815.5 5.5 6.5 3.6 5.8 5.8
削减量 -495.8 1.8 2.8 2.2 1.9 0.7
情景3 产生量 7 802.8 3.2 3.4 1.7 5.1 5.3
削减量 -483.1 4.1 5.9 4.2 2.5 1.2
  
  
[1] 氮肥工业协会. 氮肥行业“十二五”发展思路(摘选)[N/OL]. (2011-08-01). 中国化工报数字报, http://www.ccin.com.cn/ccin/news/2011/08/01/191800.shtml.
[2] 石磊, 钱易. 清洁生产的回顾与展望——世界与中国推行清洁生产的进程[J]. 中国人口资源与环境,2002, 12(2): 121-124. SHI Lei, QIAN Yi. The review and perspective of cleaner production: The-state-of-the-arts[J]. China Population, Resources and Environment, 2002, 12(2): 121-124. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-HGJS200011008.htm
[3] ZHOU Wenji, ZHU Bing, LI Qiang, et al.CO2 emissions and mitigation potential in China's ammonia industry[J]. Energy Policy, 2010, 38(7): 3701-3709.
url: http://dx.doi.org/10.1016/j.enpol.2010.02.048
[4] Rafiqul I, Weber C, Lehmann B, et al.Energy efficiency improvements in ammonia production-perspectives and uncertarties[J]. Energy, 2005, 30(13): 2487-2504.
url: http://dx.doi.org/10.1016/j.energy.2004.12.004
[5] 段宁, 白艳英, 薛萍, 等. 化肥企业清洁生产审核指南[M]. 北京: 新华出版社, 2006. DUAN Ning, BAI Yanying, XUE Ping, et al. A Guidance Manual for Fertilizer Corporation's CleanerProduction Audit [M]. Beijing: Xinhua Publishing House, 2006. (in Chinese)
[6] 谭丽超, 单正军, 葛峰, 等. 中国合成氨工业清洁生产及污染防治管理现状[J]. 污染防治技术, 2010, 23(6): 25-31. TAN Lichao, SHAN Zhengjun, GE Feng, et al.Clean production of ammonia industry and the management of pollution control in China[J]. Pollution Control Technology, 2010, 23(6): 25-31. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-WRFZ201006011.htm
[7] 曹仑, 张卫峰, 高力, 等. 中国合成氨生产能源消耗状况及其节能潜力[J]. 化肥工业, 2008, 35(2): 20-24. CAO Lun, ZHANG Weifeng, GAO Li, et al.Energy consumption in ammonia production in China and energy-saving potential[J].Chemical Fertilizer Industry, 2008, 35(2): 20-24. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-KDHL200802010.htm
[8] ZHANG Chao, CHEN Jining, WEN Zongguo. Assessment of policy alternatives and key technologies for energy conservation and water pollution reduction in China's synthetic ammonia industry[J]. Journal of Cleaner Production, 2012, 25: 96-105.
url: http://dx.doi.org/10.1016/j.jclepro.2011.11.056
[9] 工业和信息化部. 氮肥行业清洁生产技术推行方案.[EB/OL]. (2010-02-22). http://www.miit.gov.cn/n11293 472/n11295091/13028381.html.
[10] 第一次全国污染源普查资料编纂委员会. 污染源普查产排污系数手册[M]. 北京: 中国环境科学出版社, 2011.
url: http://162.105.138.200/uhtbin/cgisirsi/x/0/0/5?searchdata1=^C2990139
[11] 国家环保局科技标准司. 工业污染物产生和排放系数手册[M]. 北京: 中国环境科学出版社, 2006.
[12] 孙启宏, 韩明霞, 乔琦, 等. 辽河流域重点行业产污强度及节水减排清洁生产潜力[J]. 环境科学研究, 2010, 23(7): 869-876. SUN Qihong, HAN Mingxia, QIAO Qi, et al.Pollution generation intensity of key industries and water-saving and pollution reduction oriented and clean production potential in Liao River Basin[J].Research of Environmental Sciences, 2010, 23(7): 869-876. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-HJKX201007004.htm
[1] Kexin DENG. Retinal image registration based on hyper-edge graph matching[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 568-574.
[2] Chen HAO, Fu LI, Jiong GUO. Simulations of mixing in the pebble flow of a pebble bed HTR[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 624-628.
[3] Pengfei LIN, Xiaojian ZHANG, Chao CHEN, Jun WANG. Treatment of molybdenum-containing wastewater and drinking water[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 613-618.
[4] Qi MIN, Yuanyuan DUAN, Xiaodong WANG. Lattice Boltzmann method for the fluid saturation density based on the volume translated Peng-Robinson equation of state[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 619-623.
[5] Zhenbo WANG, Jun ZHANG, Yiming LUOSUN. Flexural performance of textile reinforced cementitious composite with sprinkling water hardening technique[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 551-555.
[6] Feng JIANG, Ziwei ZHUANG, Zhenzhong ZHANG, Jiying WEI. Evaporation-condensation technology for testing the efficiency of HEPA filter media[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 629-632.
[7] Xinrong CAO, Lei LIU, Dongyang CAI, Peng GUO, Jintian TANG. Statistical analyses of ballistocardiogram features for cardiac disease diagnosis[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 633-637.
[8] Wu XU, Qing YU, Guohuang YAO. Effect of preload on the axial capacity of CFST reinforced concrete columns[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 556-562.
[9] Ya WEI, Xiangjie YAO. Tensile creep model for concrete subject to constant restraints[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 563-567.
[10] Ronghua LIU, Jiahua WEI, Yanzhang WENG, Guangqian WANG, Shuang TANG. HydroMP: A cloud computing based platform for hydraulic modeling and simulation service[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 575-583.
[11] Na ZHAO, Zhaoyin WANG, Baozhu PAN, Zhiwei LI, Xuehua DUAN. Ecological functions of riverbed structures with different strengths in the Xiaojiang River basin[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 584-589.
[12] Hanbo YANG, Huafang LV, Qingfang HU, Huimin LEI, Dawen YANG. Comparison of parametrization methods for calculating the downward long-wave radiation over the North China Plain[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 590-595.
[13] Fenjie LONG, Zhenxing LONG, Xiaomeng WANG. Effect of equity constraints on housing prices in rising markets[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 596-601.
[14] Hong ZHANG, Yang ZHANG, Xuanbing CHEN. Experimental evaluation of Beijing resale housing information diffusion during information transmission[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 602-606.
[15] Hongwei YANG, Haoyu WANG, Yunxia LIU, Wenjun LIU, Shaoxia YANG. Ozone-biological activated carbon treatment of DBP in high-bromide water[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 607-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd