Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (3) : 320-325     DOI:
Orginal Article |
Study on urban short-term gas load forecasting based on support vector machine model
Chao ZHANG1,2,Yi LIU1(),Hui ZHANG1,Hong HUANG1
1. Institute for Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2. China National Institute of Standardization, Beijing 100191, China
Download: PDF(3225 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Natural gas is green and efficient energy which is widely used in industrial production and daily life. Daily gas load forecasting is helpful for scientifically and rationally supplying. Therefore, the forecasting results are beneficial to practical work. A forecasting model for daily gas loads was developed based on support vector machine theory. The gas load data of a North-China city were taken as a sample to verify the forecasting accuracy, with the main factors that affect the daily gas load as well as their effects on model accuracies being discussed. Several data normalization methods were used with the forecasting accuracy based on normalization methods analyzed. The developed model performs well with the error less than 5% for the through-year data, and less than 2% for the heating period data. The discussion about forecasting accuracies in this paper may be helpful for similar problems.

Keywords gas load forecasting      support vector machine      data normalization method     
ZTFLH:     
Fund: 
Issue Date: 15 March 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao ZHANG
Yi LIU
Hui ZHANG
Hong HUANG
Cite this article:   
Chao ZHANG,Yi LIU,Hui ZHANG, et al. Study on urban short-term gas load forecasting based on support vector machine model[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 320-325.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I3/320
关联因素 相关系数
燃气日负荷-平均温度 0.857
燃气日负荷-天气情况 0.225
燃气日负荷-日期属性 0.004
  
  
  
分量ID 变量 物理意义
1~5 l(d-5)~l(d-1) 前5 d的燃气日负荷
6~10 t(d-5)~t(d-1) 前5 d的日平均温度
11~15 w(d-5)~w(d-1) 前5 d的天气情况
16~20 d(d-5)~d(d-1) 前5 d的日期属性
21 t(d) 当天的平均温度
22 w(d) 当天的天气情况
23 d(d) 当天的日期属性
  
影响因子 条目 规则化
数值
影响因子 条目 规则化
数值
日期属性 星期一 0.4 天气情况 0.4
星期二 0.5 多云 0.5
星期三 0.5 0.6
星期四 0.5 小雨 0.7
星期五 0.8 0.8
星期六 1.0 小雪 0.9
星期日 1.0 1.0
  
条目 训练样本 预测时间 eMAPE/%
拟合 2008年7月20日—2009年7月23日 3.71
预测10 d 2008年7月20日—2009年7月13日 2009年7月14日—7月23日 4.28
预测20 d 2008年7月20日—2009年7月03日 2009年7月4日—7月23日 4.80
预测30 d 2008年7月20日—2009年6月23日 2009年6月24日—7月23日 4.62
  
  
  
起止时间 负荷数
值区间
天数/d 数组ID 拟合
eMAPE/%
预测10 d
eMAPE/%
预测20 d
eMAPE/%
2008年7月20日—2009年7月23日 0.1~1 369 D 3.71 4.28 4.80
2008年7月20日—11月3日 0.1~0.2 107 A 4.03 13.84 10.38
2008年11月4日—11月16日 0.2~0.5 13
2008年11月17日—2009年3月8日 0.5~0.9~0.5 112 C 1.93 3.02 4.20
2009年3月9日—3月25日 0.5~0.2 17
2009年3月26日—7月23日 0.1~0.2 120 B 2.26 4.91 4.54
  
  
  
  
[1] 肖久明. 城市燃气负荷的特点与预测模型的特征[J]. 煤气与热力, 2005, 25(1): 67-70. XIAO Jiuming. Characteristics of city gas load and features of forecast model[J]. Gas & Heat, 2005, 25(1): 67-70. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-MQRL200501020.htm
[2] 邹雪春. 城市燃气管网用气不均匀性分析及负荷预测 [D]. 广州: 广州大学, 2007. ZOU Xuechun. Non-uniformity analyses of natural gas network usage in China's cities and load prediction [D]. Guangzhou: Guangzhou University, 2007. (in Chinese)
url: http://cdmd.cnki.com.cn/Article/CDMD-11078-2007193873.htm
[3] 苗艳姝. 城市燃气负荷预测的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2006. MIAO Yanshu. Research on the natural gas load prediction in China's cities [D]. Harbin: Harbin Institute of Technology, 2006. (in Chinese)
[4] 焦文玲,秦裕琨,赵林波. 城市燃气负荷预测系统体系研究[J]. 天然气工业, 2005, 25(1): 155-158. JIAOWenling, QIN Yukun, ZHAO Linbo. Study on forecasting system of city gas load[J]. Natural Gas Industry, 2005, 25(1): 155-158. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-TRQG20050101P.htm
[5] 苗艳姝,段常贵. 基于相似日的节假日燃气短期负荷预测[J]. 煤气与热力, 2006, 26(5): 10-14. MIAO Yanshu, DUAN Changgui. Short-term gas load prediction in holidays based on similar days[J]. Gas & Heat, 2006, 26(5): 10-14. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-MQRL200605003.htm
[6] 杨苑莺. 小城镇居民生活用气规律及短期负荷预测 [D]. 重庆: 重庆大学, 2006. YANG Yuanying. Regularity of daily natural gas consumption for residents in smallChinese cities and towns and short-term load prediction [D]. Chongqing: Chongqing University, 2006. (in Chinese)
url: http://cdmd.cnki.com.cn/Article/CDMD-10611-2007037312.htm
[7] 李国芳,徐永生,苏刚. OIHF Elman网络在燃气日负荷预测中的应用[J]. 天津城市建设学院学报, 2008, 14(4): 283-288. LI Guofang, XU Yongsheng, SU Gang. Application of OIHF Elman network in forecasting of daily natural gas load[J]. J Tianjin Institute of Urban Construction, 2008, 14(4): 283-288. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-TJCS200804015.htm
[8] 豆连旺,冯良. 基于神经网络的城市燃气短期负荷预测[J]. 燃气与热力, 2005, 25(12): 10-14. DOU Lianwang, FENG Liang. Short-term city gas load forecast based on neural network[J]. Gas & Heat, 2005, 25(12): 10-14. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-MQRL200512002.htm
[9] 李持佳,焦文玲,赵林波. 燃气短期负荷预测的小波分析综合模型[J]. 天然气工业, 2007, 27(8): 103-108. LI Chijia, JIAO Wenling, ZHAO Linbo. A synthesis wavelet analysis method for short-term gas load prediction[J]. Natural Gas Industry, 2007, 27(8): 103-108. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-TRQG200708036.htm
[10] 席德粹,焦文玲,李持佳,等. 上海市燃气负荷预测系统的开发与试验运行[J]. 城市燃气, 2004, 353: 14-16. XI Decui, JIAO Wenling, LI Chijia,et al.The development and operation of the gas load forecasting system in Shanghai[J]. Urban Gas, 2004, 353: 14-16. (in Chinese)
url: http://www.cnki.com.cn/Article/CJFDTotal-CSYQ200407003.htm
[11] Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines [C]// 7th IEEE Workshop on Neural Networks for Signal Processing. Amelia Island, USA: IEEE Press, 1997: 511-520.
[12] Chen B J, Chang M W, Lin C J. Load forecasting using support vector machines: A study on EUNITE competition 2001[J]. IEEE Transactions on Power Systems, 2004, 19(4): 1821-1830.
url: http://dx.doi.org/10.1109/TPWRS.2004.835679
[13] Vapnik V N. TheNature of Statistical Learning Theory[M]. New York: Springer, 1995.
[1] TU Shouzhong, YANG Jing, ZHAO Lin, ZHU Xiaoyan. Filtering Chinese microblog topics noise algorithm based on a semi-supervised model[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 178-185.
[2] KARI·Tusongjiang, GAO Wensheng, ZHANG Ziwei, MO Wenxiong, WANG Hongbing, CUI Yiping. Power transformer fault diagnosis based on a support vector machine and a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 623-629.
[3] CHEN Dongqing, ZHANG Puhan, WANG Huazhong. Intrusion detection for industrial control systems based on an improved SVM method[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 380-386.
[4] XU Hongping, LIU Yang, YI Hang, YAN Xiaotao, KANG Jian, ZHANG Wenjin. Abnormal traffic flow identification for a measurement and control network for launch vehicles[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 20-26,34.
[5] LIU Chengying, WU Hao, WANG Liping, ZHANG Zhi. Tool wear state recognition based on LS-SVM with the PSO algorithm[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 975-979.
[6] GUO Wu, ZHANG Sheng, XU Jie, HU Guoping, MA Xiaokong. Speaker verification based on SVM and total variability[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 240-243.
[7] IMAM Seyyare, PARHAT Rayilam, HAMDULLA Askar, LI Zhijun. Keyword extraction algorithms for emotion recognition from Uyghur text[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 270-273.
[8] XIN Zhe, ZOU Ruobing, LI Shengbo, YU Jiaying, DAI Yifan, CHEN Hailiang. Target recognition around a vehicle based on an ultrasonic sensor array[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1287-1295.
[9] YANG Diange, HE Changwei, LI Man, HE Qiguang. Vehicle steering and lane-changing behavior recognition based on a support vector machine[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1093-1097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd