Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (3) : 360-365     DOI:
Orginal Article |
Collaborative filtering recommender method based on trust
Qiang ZHU1,2,Yuqiang SUN1,3()
1. University of Science and Technology of China, Hefei 230022, China
2.Zhejiang University of Media and Communications, Hangzhou 310018, China
3. Changzhou University, Changzhou 213000, China
Download: PDF(1078 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

In this paper, a recommender method based on data was developed, which includes friend recommender and application recommender. According to the friend relationship and interaction behavior, a trust computing method was proposed, with a more authentic social network then constructed with the obtained trust. The cohesive subgroup and existing friend information was employed to divide the constructed social network. Based on the work mentioned above, an improved friend recommender and application method was proposed with the similarity of users in the community being differentiated with the similarity of the user out of the community. The improved method can obtain more nearest neighbors and enhance the accuracy of friend recommender and application recommender.

Keywords social network division      trust      friend recommender      collaborative filtering     
ZTFLH:     
Fund: 
Issue Date: 15 March 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang ZHU
Yuqiang SUN
Cite this article:   
Qiang ZHU,Yuqiang SUN. Collaborative filtering recommender method based on trust[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 360-365.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I3/360
  
  
  
  
  
  
[1] 陈佳, 匡智锋, 李敏. 一种Twitter 社区中社会网络分析方法[J]. 计算机工程, 2012, 38(9): 275-281. CHEN Jia, KUANG Zhifeng, LI Min. Social network analysis method in twitter community[J]. Computer Engineering, 2012, 38(9): 275-281.(in Chinese)
url: http://118.145.16.217/magsci/article/article?id=17821598
[2] Huang D J. Email-based social network trust [C]// Proc IEEE International Conference on Social Computing / IEEE International Conference on Privacy, Security, Risk and Trust. 2010: 363-370.
[3] Zhou T. Understandingusers' initial trust in mobile banking: An elaboration likelihood perspective[J]. Computers in Human Behavior, 2012, 28: 1518-1525.
url: http://dx.doi.org/10.1016/j.chb.2012.03.021
[4] Huang D J, Zhou Z B, Hong X Y, et al.Establishing Email-based social network trust for vehicular networks [C]// Proc 7th IEEE Consumer Communications and Networking Conference (CCNC). Las Vegas, NV, 2010: 1-5.
[5] 甘早斌, 丁倩, 李开, 等. 基于声誉的多维度信任计算算法[J]. 软件学报, 2011, 22(10): 2401-2411. GAN Zaobin, DING Qian, LI Kai, et al.Reputation-based multi-dimensional trust algorithm[J]. Journal of Software, 2011, 22(10): 2401-2411.(in Chinese)
[6] 黄武汉, 孟祥武, 王立才. 移动通信网中基于用户社会化关系挖掘的协同过滤算法[J]. 电子与信息学报, 2011, 33(12): 3002-3007. HUANG Wuhan, MENG Xiangwu, WANG Licai. A collaborative filtering algorithm based on users' social relationship mining in mobile communication network[J]. Journal of Electronics & Information Technology, 2011, 33(12): 3002-3007.(in Chinese)
url: http://118.145.16.217/magsci/article/article?id=17875470
[7] 王玉祥, 乔秀全, 李晓峰, 等. 上下文感知移动社交网络服务选择机制研究[J]. 计算机学报, 2010, 33(11): 2126-2135. WANG Yuxiang, QIAO Xiuquan, LI Xiaofeng, et al.Research on context-awareness mobile SNS service selection mechanism[J]. Chinese Journal of Computers, 2010, 33(11): 2126-2135.(in Chinese)
[8] YuanW W, Guan D H, Lee Y K, et al. The small-world trust network[J]. Appliede Intelligence, 2010, 35(3): 399-410.
[9] 刘建国, 周涛, 郭强. 个性化推荐系统评价方法综述[J]. 复杂系统与复杂性科学, 2009, 6(3): 1-9. LIU Jianguo, ZHOU Tao, GUO Qiang, et al.Overview of the evaluated algorithms for the personal recommendation systems[J]. Complex Systems and Complexity Science, 2009, 6(3): 1-9. (in Chinese)
[10] Herlocker J, Konstan J, Terveen L, et a1. Evaluating collaborative filtering recommender systems[J]. ACM Trans Information Systems (TOIS), 2004, 22(1): 20-21.
[1] YANG Bo, QIU Lei, WU Shu. A collaborative filtering model based on heterogeneous graph neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1339-1349.
[2] JIA Fan, KANG Shuya, JIANG Weiqiang, WANG Guangtao. Multi-user recommendation algorithm based on vulnerability similarity[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1399-1407.
[3] YU Fajiang, CHEN Yuchi, ZHANG Huanguo. Dynamic key management with individual key revocation for TPM[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 464-473.
[4] WANG Shaoqing, LI Cuiping, WANG Zheng, CHEN Hong. Prediction of retweet behavior based on multiple trust relationships[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(4): 270-275.
[5] LIU Weidong, LIU Yaning. Variational autoencoder with side information in recommendation systems[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 698-702.
[6] LONG Yu, WANG Xin, XU Xian, HONG Xuan. Highly-descriptive chain of trust in trusted computing[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 387-394.
[7] SHEN Wenxin, TANG Wenzhe, ZHANG Qingzhen, WANG Shuli. Partnering to enhance interface management in international EPC projects[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(6): 644-650.
[8] ZHANG Min, DING Biyuan, MA Weizhi, TAN Yunzhi, LIU Yiqun, MA Shaoping. Hybrid recommendation approach enhanced by deep learning[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1014-1021.
[9] HAN Xinhui, WANG Dongqi, CHEN Zhaofeng, ZHANG Huilin. Method for sensitive data protection of web servers in the cloud[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(1): 51-57,65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd