Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (4) : 407-412     DOI:
Orginal Article |
Optimal precoding for energy harvesting cognitive radio
Rui ZHU1,2,Yunzhou LI1(),Jing WANG1
1. State Key Laboratory of Microware and Digital Communication, Tsinghua National Laboratory for Information Science andTechnology, State Key Laboratory of Wireless Mobile Communications, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2. Department of information Countermeasure, Air Force Engineering University, Shannxi 710077, China
Download: PDF(1187 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Cognitive radio (CR) can effectively improve spectrum efficiencies while energy harvesting (EH) gives green communications. However, these methods have always been analyzed separately. The small amount of combined research has used the Gaussian input assumption. These drawbacks limit practical applications of combined systems. This study analyzed a combined system using the equip probability finite-alphabet input assumption which is more suitable for digital communication signals. A pre-coder algorithm was developed based on the stochastic dynamic program to improve the system utility. Numerical results show that the algorithm performance approaches the channel capacity upper bound for the combined system.

Keywords cognitive radio      energy harvesting      stochastic dynamic program     
Issue Date: 15 April 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui ZHU
Yunzhou LI
Jing WANG
Cite this article:   
Rui ZHU,Yunzhou LI,Jing WANG. Optimal precoding for energy harvesting cognitive radio[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(4): 407-412.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I4/407
  
  
  
  
  
[1] Gastpr M. On capacity under receive and spatial spectrum-sharing constraints [J]. IEEE Trans Inf Theory, 2007, 53(2): 471-487.
url: http://dx.doi.org/10.1109/TIT.2006.889016
[2] Huang J, Berry R, Honig M L. Auction-based spectrum sharing[J]. ACM/Springer Mobile Networks and Applications Journal (MONET), 2006, 11(3): 405-418.
url: http://dx.doi.org/10.1007/s11036-006-5192-y
[3] Yan Y, Huang J, Wang J. Dynamic bargaining for relay based cooperative spectrum sharing[J]. IEEE J Sel Areas Commun, 2013, 31(8):1480-1493.
url: http://dx.doi.org/10.1109/JSAC.2013.130812
[4] Lu X, Erkip E, Wang Y. Power efficient multimedia communication over wireless channels[J]. IEEE J Sel Areas Commun., 2003, 21(5): 1738-1751.
url: http://dx.doi.org/10.1109/JSAC.2003.815682
[5] Cui Q, Jantti R, Tao X. Energy-efficient relay selection and power allocation for two-way relay channel with analog network coding[J]. IEEE Communications Letters, 2012, 16(6):816-819
url: http://dx.doi.org/10.1109/LCOMM.2012.040912.112435
[6] Ozel O, Ulukus S. Achieving AWGN capacity under stochastic energy harvesting[J]. IEEE Trans Inf Theory, 2012, 58(10): 6471-6483.
url: http://dx.doi.org/10.1109/TIT.2012.2204389
[7] Ozel O, Tutuncuoglu K, Yang J. Transmission with energy harvesting nodes in fading wireless channels: Optimal policies[J]. IEEE J Sel Areas Commun, 2011, 29(8): 1732-1743.
url: http://dx.doi.org/10.1109/JSAC.2011.110921
[8] Chin K, Zhang R. Optimal energy allocation for wireless communications with energy harvesting constraints[J]. IEEE Trans Signal Process, 2012, 60(9): 4808-4818.
url: http://dx.doi.org/10.1109/TSP.2012.2199984
[9] Tutuncuoglu K, Yener A. Optimum transmission policies for battery limited energy harvesting nodes[J]. IEEE Trans Commun, 2012, 11(3): 1180-1189.
[10] Guo D, Shamai S, Verdú S. Mutual information and minimum mean-square error in Gaussian channels[J]. IEEE Trans Inf Theory, 2005, 51(4): 1261-1282.
url: http://dx.doi.org/10.1109/TIT.2005.844072
[11] Cheng H, Zheng Y, Rosa M. Globally optimal linear precoders for finite alphabet signals over complex vector Gaussian channels[J]. IEEE Trans on signal processing, 2011, 59(7):3301-3314.
url: http://dx.doi.org/10.1109/TSP.2011.2140112
[12] Zeng W, Xiao C, Lu J. Globally optimal precoder design with finite-alphabet input for cognitive radio networks[J]. IEEE Selected area in communications, 2012, 30(10): 1861-1874.
url: http://dx.doi.org/10.1109/JSAC.2012.121103
[13] Zeng W, Xiao C, Wang M.et al.Linear precoding for finite- alphabet inputs over MIMO fading channels with statistical CSI[J]. IEEE Trans Signal Process, 2012, 60(6): 3134-3148.
url: http://dx.doi.org/10.1109/TSP.2012.2188717
[14] Lozano A, Tulino A, Verdú S. Optimum power allocation for parallel Gaussian channels with arbitrary input distribu- tions[J]. IEEE Trans Inf Theory, 2006, 52(7): 3033-3051.
url: http://dx.doi.org/10.1109/TIT.2006.876220
[1] BAI Shipeng, HOU Zhichao. Vehicle tive vertical vibration energy harvesting using unsprung tuned mass dampers[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 1013-1020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd