Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (4) : 502-507     DOI:
Orginal Article |
User preference mining based on social tagging
Wei HU,Yaoxue ZHANG(),Yuezhi ZHOU
National Laboratory of Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Download: PDF(2127 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

User preference mining is one of the key problems in personalized recommendations and intelligent services. Social tagging in web2.0 reflects the user's potential interests. This paper presents a user preference modeling method based on social tagging that predicts user preferences based on interactions between user and tag. The user's “degree of recognition” and “dependency” on an individual tag are combined to evaluate the user's tag preference. The user's interest is then decomposed into a fine-grained result using a “Tag Genome”. Tests based on real data demonstrate that this method significantly improves prediction accuracies and coverage to more accurately match the user's real interests.

Keywords user model      social tags      data mining     
Issue Date: 15 April 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei HU
Yaoxue ZHANG
Yuezhi ZHOU
Cite this article:   
Wei HU,Yaoxue ZHANG,Yuezhi ZHOU. User preference mining based on social tagging[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(4): 502-507.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I4/502
  
  
  
  
  
  
  
  
  
[1] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
url: http://dx.doi.org/10.1109/TKDE.2005.99
[2] Godoy D, Amandi A. User profiling in personal information agents: a survey[J]. The Knowledge Engineering Review, 2005, 20(04): 329-361.
url: http://dx.doi.org/10.1017/S0269888906000397
[3] Resnick P, Iacovou N, Suchak M, et al.GroupLens: an open architecture for collaborative filtering of netnews [C]// Proceedings of the 1994 ACM conference on Computer supported cooperative work. North Carolina: ACM, 1994: 175-186.
[4] Herlocker J L, Konstan J A, Terveen L G, et al.Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems (TOIS), 2004, 22(1): 5-53.
url: http://dx.doi.org/10.1145/963770.963772
[5] Vig J, Soukup M, Sen S, et al.Tag expression: tagging with feeling [C]// Proceedings of the 23nd annual ACM symposium on User interface software and technology. New York, NY: ACM, 2010: 323-332.
[6] Li X, Guo L, Zhao Y E. Tag-based social interest discovery [C]// Proceedings of the 17th international conference on World Wide Web.Beijing: ACM, 2008: 675-684.
[7] 王卫平, 王金辉. 基于Tag和协同过滤的混合推荐方法[J]. 计算机工程, 2011, 37(14): 34-35. WANG Weiping, WANG Jinhui. Hybrid recommendation method based on tag and collaborative filtering[J]. Computer Engineering. 2011, 37(14): 34-35. (in Chinese)
url: http://118.145.16.217/magsci/article/article?id=11978829
[8] 夏宁霞, 苏一丹, 覃华, 等. 社会化标签系统中个性化的用户建模方法[J]. 计算机应用, 2011, 31(6): 1667-1670. XIA Ningxia, SU Yidan, QIN Hua, et al.Method for personalized user profiling in social tagging systems[J]. Journal of Computer Applications, 2011, 31(6): 1667-1670. (in Chinese)
url: http://118.145.16.217/magsci/article/article?id=18853550
[9] 韩敏, 唐常杰, 段磊, 等. 基于 TF# IDF 相似度的标签聚类方法 &[J]. 计算机科学与探索, 2010, 4(3): 240-245. HAN Min, TANG Changjie, DUAN Lei, et al.TF-IDF similarity based method for tag clustering[J]. Journal of Frontiers of Computer Science & Technology, 2010, 4(3): 240-245. (in Chinese)
url: http://118.145.16.217/magsci/article/article?id=1073417
[10] Ramos J. Using tf-idf to determine word relevance in document queries [C]// Proceedings of the FirstInstructional Conference on Machine Learning. Piscataway, NJ: CS536, 2003: 235-239.
[11] Cosley D, Lam S K, Albert I, et al.Is seeing believing?: how recommender system interfaces affect users' opinions [C]// Proceedings of the SIGCHI conference on Human factors in computing systems. Ft. Lauderdale, FL: ACM, 2003: 585-592.
[12] Vig J, Sen S, Riedl J. Computing theTag Genome, MC2010319 [R]. Minneapolis, MN: University of Minnesota, 2010.
[13] Vig J, Sen S, Riedl J. Thetag genome: Encoding community knowledge to support novel interaction[J]. ACM Transactions on Interactive Intelligent Systems (TiiS), 2012, 2(3): 13.
[1] HE Sheng, SHU Xueming, HU Jun, ZHANG Lei, ZHANG Jia, ZHANG Jiale, ZHOU Yang. Prediction and early-warning method of electrical fire risk based on fire-fighting big data[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 478-491.
[2] FAN Xiaoliang, PENG Zhaopeng, ZHENG Chuanpan, WANG Cheng. Spatio-temporal correlation mining method for large-scale traffic networks[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1317-1325.
[3] HU Zhenzhong, LENG Shuo, YUAN Shuang. BIM-based, data-driven method for intelligent operation and maintenance[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 199-207.
[4] YU Hongwei, ZHOU Dongbo, XU Wenhui, YU Yaying, WANG Xiaomei, TU Yue. Daily behavior prediction of college students on campus based on multifragment semantic spatiotemporal graph convolutional network[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 105-115.
[5] LI Junyi, WANG Lizhen, CHEN Hongmei. dGridTopk-FCPM: A top-k spatial co-location pattern mining algorithm based on fuzzy theory and d-grids[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 943-952.
[6] WANG Xiaoxu, WANG Lizhen, WANG Jialong. Mining spatio-temporal co-location fuzzy congestion patterns from traffic datasets[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 683-692.
[7] JIANG Hanchen, LIN Peng, QIANG Maoshan. Supervisor management and evaluation method based on real-time tracking[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(9): 950-956,963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd