Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (4) : 508-514     DOI:
Orginal Article |
Residual life prediction based on the state space for inertial measurement units
Lei FENG1,2,Hongli WANG2,Zhijie ZHOU2,Xiaosheng SI1,2,Hongxing ZOU1()
1. Department of Automation, Tsinghua University, Beijing 100084, China
2. The Second Artillery Engineering University, Xi'an 710025, China
Download: PDF(1143 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Real-time and accurate residual life prediction for an inertial measurement unit (IMU) can provide effective decision support for timely and cost-effective maintenance scheduling. The performance index reflecting the degradation of the IMU cannot be observed directly and direct measurements are contaminated by noise. Thus, a state space model was developed to predict the residual life of an IMU. Since the changes in the degradation state of the IMU are nonlinear over time, this analysis was a nonlinear drift-driven Brownian motion (BM) is used to characterize the degradation process, with the expectation maximization (EM) algorithm and the Kalman filter used to jointly estimate and update the state and model parameters. Furthermore, the estimated state distribution is incorporated into the residual life model using an approximate analytical form of the distribution. The approach is validated by comparison with experimental data which indicates that this method gives better prediction accuracies and lower uncertainties.

Keywords residual life      prediction      state space      nonlinearity      expectation maximization     
Issue Date: 15 April 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lei FENG
Hongli WANG
Zhijie ZHOU
Xiaosheng SI
Hongxing ZOU
Cite this article:   
Lei FENG,Hongli WANG,Zhijie ZHOU, et al. Residual life prediction based on the state space for inertial measurement units[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(4): 508-514.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I4/508
  
  
  
  
[1] Zhou Z J, Hu C H, Xu D L, et al.A model for real-time failure prognosis based on hidden Markov model and belief rule base [J]. European Journal of Operational Research, 2010, 207(1): 269-283.
url: http://dx.doi.org/10.1016/j.ejor.2010.03.032
[2] Si X S, Wang W, Hu C H, et al.Remaining useful life estimation-A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14.
url: http://dx.doi.org/10.1016/j.ejor.2010.11.018
[3] Sun J Z, Zuo H F, Pecht M G. Advances in sequential Monte Carlo methods for joint state and parameter estimation applied to prognostics [C]// Prognostics and System Health Management Conference. Shenzhen, China: IEEE Press, 2011: 1-7.
[4] 冯磊, 王宏力, 韩晓霞等. 考虑监测噪声的陀螺仪剩余寿命在线预测[J]. 长春工业大学学报(自然科学版), 2013, 34(2):155-159. FENG lei, WANG Hongli, HAN Xiaoxia, et al. Real-time prediction on gyro residual life considering the monitoring noise[J]. Journal of Changchun University of Technology (Natural Science Edition), 2013, 34(2):155-159. (in Chinese)
[5] Xu Z G, Ji Y D, Zhou D H. Real-time reliability prediction for a dynamic system based on the hidden degradation process identification[J]. IEEE Transactions on Reliability, 2008, 57(2): 230-242.
url: http://dx.doi.org/10.1109/TR.2008.916882
[6] Christer A H, Wang W, Sharp J M. A state space condition monitoring model for furnace erosion prediction and replacement[J]. European Journal of Operational Research, 1997, 101(1): 1-14.
url: http://dx.doi.org/10.1016/S0377-2217(97)00132-X
[7] Batzel T D, Swanson D C. Prognostic health management of aircraft power generators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 473-483.
url: http://dx.doi.org/10.1109/TAES.2009.5089535
[8] Gasperin M, Juricic D, Boskoski P. Model-based prognostics of gear health using stochastic dynamical models[J]. Mechanical Systems and Signal Processing, 2010, 25(2): 537-548.
[9] Cadini F, Zio E, Avram D. Monte Carlo-based filtering for fatigue crack growth estimation[J]. Probabilistic Engineering Mechanics, 2009, 24(3): 367-373.
url: http://dx.doi.org/10.1016/j.probengmech.2008.10.002
[10] Zio E, Peloni G. Particle filtering prognostic estimation of the remaining useful life of nonlinear components[J]. Reliability Engineering and System Safety, 2011, 96(3): 403-409.
url: http://dx.doi.org/10.1016/j.ress.2010.08.009
[11] Si X S, Wang W, Hu C H, et al.Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability, 2012, 61(1): 50-67.
url: http://dx.doi.org/10.1109/TR.2011.2182221
[12] Zhou Y F, Sun Y, Mathew J, et al.Latent degradation indicators estimation and prediction: A Monte Carlo approach[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 222-236.
url: http://dx.doi.org/10.1016/j.ymssp.2010.08.012
[13] Lei F, Wang H L, Si X S, et al.A state space based prognostic model for hidden and age-dependent nonlinear degradation process[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(4): 1072-1086.
url: http://dx.doi.org/10.1109/TASE.2012.2227960
[14] Lee M L T, Whitmore G A. Threshold regression for survival analysis: Modeling event times by a stochastic process reaching a boundary[J]. Statistical Science, 2006, 21(4): 501-513.
url: http://dx.doi.org/10.1214/088342306000000330
[15] Ricciardi L M. On the transformation of diffusion processes into the Wiener process[J]. Journal of Mathematical Analysis and Applications, 1976, 54(1): 185-199.
url: http://dx.doi.org/10.1016/0022-247X(76)90244-4
[16] 王志贤. 最优状态估计与系统辨识 [M]. 西安: 西北工业大学出版社, 2004. WANG Zhixian. Optimal State Estimation and System Identification [M]. Xi'an: Northwestern Polytechnical University Press, 2004. (in chinese)
[17] Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, Series B, 1977, 39(1): 1-38.
[18] Schon T B. An explanation of the expectation maximization algorithm [Z]. Division of Automatic Control, Linkoping University, Linkoping, Sweden, Tech.Rep. LITH-ISY-R-2915, 2009.
[19] 周志杰. 置信规则库在线建模方法与故障预测 [D]. 西安: 第二炮兵工程学院, 2010. ZHOU Zhijie. Online modeling methods of belief rule base and failure prognosis [D]. Xi'an: The Second Artillery Engineering University, 2010. (in chinese)
[20] 胡昌华, 司小胜. 基于信度规则库的惯性平台健康状态参数在线估计[J]. 航空学报, 2010, 31(7): 1454-1465. HU Changhua, SI Xiaosheng. Real-time parameters estimation of belief rule base health condition for inertial platform[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1454-1465. (in chinese)
url: http://118.145.16.217/magsci/article/article?id=1708127
[21] Carr M J, Wang W. An approximate algorithm for prognostic modelling using condition monitoring information[J]. European Journal of Operational Research, 2011, 211(1): 90-96.
url: http://dx.doi.org/10.1016/j.ejor.2010.10.023
[22] Si X S, Hu C H, Wang W, et al.An adaptive and nonlinear drift-based Wiener process for remaining useful life estimation [C]//Prognostics and Health Management Conference, Shenzhen, China: IEEE Press, 2011: 1-5.
[23] Carr M J, Wang W. Modeling failure modes for residual life prediction using stochastic filtering theory[J]. IEEE Transactions on Reliability, 2010, 59(2): 90-96.
[1] ZHANG Xueqin, LIU Gang, WANG Zhineng, LUO Fei, WU Jianhua. Microscopic diffusion prediction based on multifeature fusion and deep learning[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 688-699.
[2] HE Sheng, SHU Xueming, HU Jun, ZHANG Lei, ZHANG Jia, ZHANG Jiale, ZHOU Yang. Prediction and early-warning method of electrical fire risk based on fire-fighting big data[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 478-491.
[3] FAN Xiaoliang, PENG Zhaopeng, ZHENG Chuanpan, WANG Cheng. Spatio-temporal correlation mining method for large-scale traffic networks[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1317-1325.
[4] ZHU Wuxiang, LIAO Jingqiu, ZHAN Ziliang, TAN Zhijia. Systematic review and future perspectives of financial distress prediction studies: Back to the principle of finance[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1467-1482.
[5] DAI Xin, HUANG Hong, JI Xinyu, WANG Wei. Spatiotemporal rapid prediction model of urban rainstorm waterlogging based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 865-873.
[6] REN Jianqiang, CUI Yapeng, NI Shunjiang. Prediction method of the pandemic trend of COVID-19 based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 1003-1011.
[7] LIU Jiangfan, GE Bing, LI Shanshan, LU Xiang. A prediction method for wall cooling efficiency of combustor chamber based on neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 681-690.
[8] GUO Shiyuan, MA Weizhi, LU Ruilin, LIU Jinlong, YANG Zhigang, WANG Zhongjing, ZHANG Min. Prediction of canal discharge under complex conditions based on a long short-term memory neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 1924-1934.
[9] ZHAO Zeheng, ZHAO Jinsong. Remaining useful life prediction of fan belts based on destructive experiments and autoencoders[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1458-1466.
[10] HUANG Yonghao, YANG Xinmiao, YUE Jintao. Urban street bicycle flow analysis based on multi-scale geographically weighted regression model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1132-1141.
[11] CHEN Chuangang, HU Jinqiu, HAN Zicong, CHEN Yiyue, XIAO Shangrui. Knowledge graph based early warning method for accident evolution in natural gas pipeline station abroad for harsh environmental conditions[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1081-1087.
[12] LEI Zheng, JIANG Peng, WANG Qiming. Prognostics health management system for FAST actuators[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1796-1802.
[13] YU Hongwei, ZHOU Dongbo, XU Wenhui, YU Yaying, WANG Xiaomei, TU Yue. Daily behavior prediction of college students on campus based on multifragment semantic spatiotemporal graph convolutional network[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 105-115.
[14] LI Rui, LI Chunming, SU Jie, CHEN Liang, QIN Zhaobo, BIAN Yougang. Slid parameter estimates for tracked vehicles with trajectory prediction compensation[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 133-140.
[15] YU Yong, WANG Yinggang, LUO Zhengguo, YANG Yan, WANG Xinkai, GAO Tao, YU Qian. Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd