Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (4) : 515-521     DOI:
Orginal Article |
Recurrence based nonlinear analysis for network application traffic
Jing YUAN1,2,Junsong WANG1,3,Qiang LI1,Xi CHEN1()
1. Department of Automation, Tsinghua University, Beijing 100084, China
2. National Computer Network Emergency Response Technical Team Coordination Center of China, Beijing 100029, China
3. School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
Download: PDF(1624 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Accurate characterization of the traffic from different network applications plays an important role in traffic classifications to guarantee the quality of service of Internet traffic. The behavior of various network application traffic was analyzed based on the recurrence properties of the network traffic. A high-dimensional phase space is constructed for the traffic time series and then recurrences in the traffic state trajectory are analyzed to identify the intrinsic characteristics of the application traffic. Analyses show that the nonlinear dynamic features can accurately characterize application traffic behavior and that these features are independent of the network scale and Internet protocol version. Therefore, the nonlinear dynamics of application traffic can be used to improve network traffic classification.

Keywords network application traffic      phase space      recurrence property      dynamic feature     
Issue Date: 15 April 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing YUAN
Junsong WANG
Qiang LI
Xi CHEN
Cite this article:   
Jing YUAN,Junsong WANG,Qiang LI, et al. Recurrence based nonlinear analysis for network application traffic[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(4): 515-521.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I4/515
  
  
  
类型 采集时间 包数 流数 IP数
h 109 107 105
IPv4 24 10.7 24.6 63.3
IPv6 24 15.6 7.7 2.4
  
应用协议类型 端口 描述
HTTP 80、 443 Web应用
FTP 20、 21 文件传输协议
Email 25、 993 邮件传输协议
DNS 53 (UDP) 域名解析
BitTorrent 6 881 P2P应用
QQ 8 000、 4 000(UDP) 即时聊天应用
  
  
应用类型 RR/% DET/% ENT
HTTP 8.36 27.34 1.88
DNS 3.93 12.08 1.52
FTP 34.62 89.34 3.08
Email 11.77 46.75 1.97
BitTorrent 5.38 20.94 1.44
QQ 9.92 34.19 2.01
  
  
  
  
  
[1] Ohira T, Sawatari R. Phase Transition in a computer network traffic model [J]. Physics Review E, 1998, 58(1): 193-195.
url: http://dx.doi.org/10.1103/PhysRevE.58.193
[2] Takayasu M, Takayasu H, Fukuda K. Dynamic phase transition observed in the Internet traffic flow[J]. Physica A, 2000, 277(1): 248-255.
url: http://dx.doi.org/10.1016/S0378-4371(99)00499-9
[3] Bigdeli N, Haeri M, Choobkar S, et al.Characterization of complex behaviors of TCP/RED computer networks based on nonlinear time series analysis methods[J]. Physica D, 2007, 233(2): 138-150.
url: http://dx.doi.org/10.1016/j.physd.2007.06.017
[4] LI Qiang, QIN Tao, GUAN Xionghong, et al.Empirical analysis and comparison of IPv4-IPv6 traffic: A case study on the campus network [C]// Proceedings of the 18th IEEE International Conference on Networks. Singapore: IEEE press, 2012: 395-399.
[5] Bujlow T, Riaz T, Pedersen J M. A method for classification of network traffic based on C5.0 machine learning algorithm [C]// Proceedings of International Conference on Computing, Networking and Communications. Maui, HI: IEEE press, 2012: 237-241.
[6] Grossglauser M, Bolot J C. On the relevance of long-range dependence in network traffic[J]. IEEE/ACM Transactions on Networking, 1999, 7(5): 629-640.
url: http://dx.doi.org/10.1109/90.803379
[7] Willinger W, Paxson V, Taqqu M S. Self-Similarity and Heavy Tails: Structural Modeling of Network Traffic[M]. Boston, MA: Springer press, 1998.
[8] Masugi M. Recurrence plot-based approach to the analysis of IP-network traffic in terms of assessing non-stationary transitions over time[J]. IEEE Transactions on Circuites and Systems, 2006 53(10): 2318-2326.
url: http://dx.doi.org/10.1109/TCSI.2006.883155
[9] WANG Junsong, YUAN Jing, LI Qiang, et al.Correlation dimension based nonlinear analysis of network traffics with different application protocols[J]. Chinese Physics B, 2011, 20(5): 050506.
url: http://dx.doi.org/10.1088/1674-1056/20/5/050506
[10] Kantz H, Schreiber T. Nonlinear Time Series Analysis [M]. 2nd ED. New York, NY: Cambridge University Press, 2004.
[11] Eckmann J P, Kamphorst S O, Ruelle D. Recurrence plots of dynamical systems[J]. Europhysics Letters, 1987, 4(9): 973-977.
url: http://dx.doi.org/10.1209/0295-5075/4/9/004
[12] Marwan N, Romano M C, Thiel M, et al.Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438(5): 237-329.
url: http://dx.doi.org/10.1016/j.physrep.2006.11.001
[13] Zbilut J P, Webber C L. Embedding and delays as derived from quantification of recurrence plots[J]. Physics Letter A, 1992, 171(3): 973-977.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd