Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (5) : 563-567     DOI:
Orginal Article |
Tensile creep model for concrete subject to constant restraints
Ya WEI(),Xiangjie YAO
Key Laboratory of Civil Engineering Safety and Durability of the Ministry of Education of China, Department of Civil Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1449 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Tensile stresses develop in restrained concrete slabs with shrinkage deformation. The appropriate creep or relaxation functions are crucial for assessing the stress development and the associated cracking potential. Existing creep models were found not suitable for such stress evaluations. This study investigates restrained slabs stress-strain characteristics and tensile creep behavior in axially restrained concrete specimens which represent field conditions of actual structures. A modified tensile creep compliance function is used to account for the high viscous effect with restrained conditions for accurate predictions of the stress and cracking potential in structures.

Keywords concrete      shrinkage deformation      restrained stress      tensile creep      flow strain     
ZTFLH:     
Fund: 
Issue Date: 15 May 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya WEI
Xiangjie YAO
Cite this article:   
Ya WEI,Xiangjie YAO. Tensile creep model for concrete subject to constant restraints[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 563-567.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I5/563
系列 混凝土组分/(kg分比-3) 养护、测试
温度/℃
水泥 矿渣
O23 451 203 1 143 402 0 23
O33 451 203 1 143 402 0 33
G23 316 203 1 143 402 135 23
G33 316 203 1 143 402 135 33
  
  
  
  
  
[1] Kovler K, Sikuler J, Bentur A. Restrained shrinkage tests of fiber reinforced concrete ring specimens: Effect of core thermal expansion[J]. Materials and Structures, 1993, 26(4): 231-237.
url: http://dx.doi.org/10.1007/BF02472616
[2] Bentz D, Jensen O, Hansen K, et al.Influence of cement particle size distribution on early age autogenous strains and stresses in cement-based materials[J]. Journal of the American Ceramic Society, 2001, 84(1): 129-135.
url: http://dx.doi.org/10.1111/j.1151-2916.2001.tb00619.x
[3] 杨杨, 许四法, 叶德艳, 等. 早龄期高强混凝土拉伸徐变特性[J]. 硅酸盐学报, 2009, 37(7): 1124-1129. YANG Yang, XU Sifa, YE Deyan, et al.Early age high strength concrete tensile creep properties[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1124-1129.
[4] 惠荣炎, 黄国兴, 混凝土的徐变 [M]. 北京: 中国铁道出版社, 1988. HUI Rongyan, HUANG Guoxing. Creep of Concrete [M]. Beijing: China Railway Publishing House, 1988.
[5] Neville A, Dilger A, Brooks J. Creep of Plain and Structural Concrete [M]. New York, USA: Construction Press, 1983.
[6] ACI Committee 209. Prediction of Creep, Shrinkage and Temperature Effect in Concrete Structures, ACI 209R-92 [R]. Farmington Hills, USA: American Concrete Institute, 1992.
[7] CEB Bulletin No.213/214. CEB-FIP Model Code 1990[S]. London, UK: British Standard Institution, 1993.
[8] Bažant Z, Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3[J]. Materials and Structures, 1995, 28(6): 38-39.
[9] Bažant Z. Prediction of concrete creep and shrinkage: Past, present and future[J]. Nuclear Engineering and Design, 2001, 203(1): 27-38.
url: http://dx.doi.org/10.1016/S0029-5493(00)00299-5
[10] 丁文盛, 吕志涛, 孟少平. 混凝土收缩徐变预测模型的分析比较[J]. 桥梁建设, 2004, 6: 13-16. DING Wensheng, LV Zhitao, MENGShaoping. Analysis of models for concrete shrinkage and creep[J]. Bridge Construction, 2004, 6: 13-16.
url: http://118.145.16.217/magsci/article/article?id=8928873
[11] Springenschmid R, Breitenbucher R, Mangold M. Development of the cracking frame and the temperature-stress testing machine [C]// Springenschmid, ed. Proceedings of Thermal Cracking in Concrete at Early Ages. London, UK: E&FN SPON, 1994: 137-144.
[12] Bentur A, Kovler K. Evaluation of early age cracking characteristics in cementitious systems[J]. Materials and Structures, 2003, 36(3): 183-190.
url: http://dx.doi.org/10.1617/14014
[13] Shah S, Ouyang C, Marikunte S, et al.A method to predict shrinkage cracking of concrete[J]. ACI Material Journal, 1998, 95(4): 339-346.
[14] Igarashi1 S, Bentur A, Kovler K. Autogenous shrinkage and induced restraining stresses in high-strength concretes[J]. Cement and Concrete Research, 2000, 30(11): 1701-1707.
url: http://dx.doi.org/10.1016/S0008-8846(00)00399-9
[15] Kristiawan S. Tensile stress-strain behaviour of concrete under various rates of loading and the role of creep on the behaviour[J]. Teknik Sipil, 2005, 6(1): 73-81
[16] Reiner M. On volume or isotropic flow as exemplified in the creep of concrete[J]. Applied. Science Research, 1949, 1(1): 475-488.
url: http://dx.doi.org/10.1007/BF02120348
[17] Østergaard L, Lange D, Altoubat S, et al.Tensile basic creep of early-age concrete under constant load[J]. Cement Concrete Research, 2001, 31(12): 1895-1899.
url: http://dx.doi.org/10.1016/S0008-8846(01)00691-3
[18] Bažant Z, Hauggard A, Baweja S, et al.Microprestress solidification theory for concrete creep. I: Aging and drying effects[J]. Journal of Engineering Mechanics-ASCE, 1997, 123(11): 1188-1194.
url: http://dx.doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188)
[1] AN Ruinan, LIN Peng, CHEN Daoxiang, AN Bang, GAO Yangyang. Intelligent pipe-cooling control method and system for anchorage mass concrete[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 601-611.
[2] HUANG Ben, KANG Fei, TANG Yu. A real-time detection method for concrete dam cracks based on an object detection algorithm[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1078-1086.
[3] AN Ruinan, LIN Peng, CHEN Daoxiang, AN Bang, LU Guannan, LIN Zhitao. Temperature gradient monitoring and thermal evolution of a super mass concrete structure[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1050-1059.
[4] LI Ming, LIN Peng, LI Zichang, LIU Yuanguang, ZHANG Rui, GAO Xiangyou. Intelligent cooling control of roller-compacted concrete dam during dam gap diversion[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1060-1067.
[5] WANG Haoran, XIE Hui, CHEN Yongcan, LIU Kang, LI Zhengwen, LI Yonglong. Intelligent detection and numerical simulation analysis of concrete abrasion of astilling basin floor[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1095-1103.
[6] LIN Haitao, WANG Haoran, LI Yonglong, CHEN Yongcan, ZHANG Hua. Concrete image enhancement method for underwater uneven illumination scenes[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1144-1152.
[7] XU Xiaorong, HE Taohong, LEI Zhengqi, ZHANG Quanyi, LI Cong, JIN Feng. Safety evaluation of rock-filled concrete gravity dam with long section during the impoundment operation period[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1375-1387.
[8] YU Shunyao, XU Xiaorong, QIU Liuchao, JIN Feng. Experimental study on heterogeneous temperature distribution of rock-filled concrete before and after casting[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1388-1400.
[9] CHENG Heng, ZHOU Qiujing, LOU Shijian, ZHANG Guoxin, LIU Yi, LEI Zhengqi. Simulation of the working behavior of Shibahe reservoir rock-filled concrete gravity dam during construction[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1408-1416.
[10] LÜ Miao, AN Xuehui, LI Pengfei, ZHANG Jingbin, BAI Hao. Review of smart production techniques for the entire self-compacting concrete production process[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1270-1280.
[11] WANG Hui, MA Jiajun, ZHOU Hu, HE Shiqin, JIN Feng. Mechanical behavior of rock-filled concrete with uniaxial compression[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 339-346.
[12] FAN Qixiang, DUAN Yahui, WANG Yezhen, WANG Xiaohai, YANG Simeng, KANG Xusheng. Intelligent closed-loop control of concrete moisture levels[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 671-680.
[13] NING Zeyu, LIN Peng, PENG Haoyang, WANG Zhilin, CHEN Wenfu, TAN Yaosheng, ZHOU Tiangang. Moving-average calculations for real-time concrete temperature monitoring[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 681-687.
[14] MEI Jie, LI Qingbin, CHEN Wenfu, WU Kun, TAN Yaosheng, LIU Chunfeng, WANG Dongmin, HU Yu. Overtime warning of concrete pouring interval based on object detection model[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 688-693.
[15] YANG Ning, LIU Yi, QIAO Yu, TAN Yaosheng, ZHU Zhenyang. Intelligent spray control for the concrete curing of mass concrete bins[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 724-729.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd