Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (5) : 568-574     DOI:
Orginal Article |
Retinal image registration based on hyper-edge graph matching
Kexin DENG()
School of Electronic Engineering, Xidian University, Xi'an 710071, China
Download: PDF(2453 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Retinal fundus image registration is a key step in clinical eye disease diagnosis and treatment. Targeting the difficulties in dealing with pair of images with large field of view differences or with great structural noises caused by over-segmentation, this paper presents an improved graph-based algorithm to match retinal vessel networks by utilizing higher-order relations constructed from the vessel structural graphs whose nodes represent vascular bifurcations with the edges describing relations between feature points. The method performs in a fully automatic fashion, with a multi-scale Gabor filter first employed for detection and extraction of retinal vessels and with the correspondences then recovered between two pathwise hyper-edge graphs using an efficient pairwise spectral matching scheme. Experimental evaluation shows that the developed method is effective and accurate in terms of the feature recall rate and the vascular CEM distance.

Keywords graph matching      hyper-edge      spectral matching      vessel detection      retinal image registration     
ZTFLH:     
Fund: 
Issue Date: 15 May 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kexin DENG
Cite this article:   
Kexin DENG. Retinal image registration based on hyper-edge graph matching[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 568-574.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I5/568
  
  
  
  
  
测试样本
序列
噪声率 匹配召回率
GA BGA SM HE-SM
R01-02 0.45 0.43 0.54 0.49 0.54
R03-04 0.42 0.67 0.58 0.23 0.82
R05-06 0.28 0.44 0.68 0.73 0.76
R07-08 0.32 0.26 0.61 0.79 0.65
R09-10 0.23 0.42 0.75 0.83 0.86
R11-12 0.55 0.13 0.30 0 0.70
R13-14 0.49 0.26 0.55 0.53 0.77
R15-16 0.53 0.11 0.33 0.44 0.81
均值 0.41 0.34 0.54 0.51 0.74
  
  
测试样本
序列
图像交
叠率/%
血管中线距离/像素
GM-ICP HE-GM-ICP GDB-ICP
R01-02 63.02 0.68 0.68 0.71
R03-04 64.72 0.79 0.77 0.74
R05-06 85.49 0.74 0.74 0.73
R07-08 80.98 1.05 1.05 1.02
R09-10 83.00 0.66 0.65 0.64
R11-12 51.02 0.96 0.89 0.85
R13-14 51.62 1.22 1.14 1.03
R15-16 63.17 0.86 0.81 0.80
  
[1] DENG Kexin, TIAN Jie, ZHENG Jian, et al.Retinal fundus image registration via vascular structure graph matching[J]. International Journal of Biomedical Imaging, 2010, doi:
doi: 10.1155/2010/906067 url: http://dx.doi.org/10.1155/2010/906067
[2] Legg P, Rosin P, Marshall D, et al.Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation[J]. Computerized Medical Imaging and Graphics, 2013, 37(7-8): 597-606.
url: http://dx.doi.org/10.1016/j.compmedimag.2013.08.004
[3] TSAI Chialing, LI Chunyi, YANG Gehua, et al.The edge-driven dual-bootstrap iterative closest point algorithm for registration of multimodal fluorescein angiogram sequence[J]. IEEE Transactions on Medical Imaging, 2010, 29(3): 636-649.
url: http://dx.doi.org/10.1109/TMI.2009.2030324
[4] Stewart C, TSAI Chialing, Roysam B. The dual-bootstrap iterative closest point algorithm with application to retinal image registration[J]. IEEE Transactions on Medical Imaging, 2003, 22(11): 1379-1394.
url: http://dx.doi.org/10.1109/TMI.2003.819276
[5] ZHENG Yuanjie, Daniel E, Allan A, et al.Landmark matching based retinal image alignment by enforcing sparsity in correspondence matrix[J]. Medical Image Analysis, 2013, doi:
doi: 10.1016/j.media.2013.09.009 url: http://dx.doi.org/10.1016/j.media.2013.09.009
[6] Perez R A, Cabido R, Trucco E, et al.RERBEE: Robust efficient registration via bifurcations and elongated elements applied to retinal fluorescein angiogram sequences[J]. IEEE Transactions on Medical Imaging, 2012, 31(1): 140-150.
url: http://dx.doi.org/10.1109/TMI.2011.2167517
[7] Dashtbozorg B, Mendonca A M, Campilho A. An automatic graph-based approach for artery/vein classification in retinal images[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1073-1083.
url: http://dx.doi.org/10.1109/TIP.2013.2263809
[8] XU Xiayu, Meindert N, QI Song, et al.Vessel boundary delineation on fundus images using graph-based approach[J]. IEEE Transactions on Medical Imaging, 2011, 30(6): 1184-1191.
url: http://dx.doi.org/10.1109/TMI.2010.2103566
[9] Serradell E, Przemyslaw G, Jan K, et al.Robust non-rigid registration of 2d and 3d graphs [C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012: 996-1003.
[10] Soares J, Leandro J, Cesar R, et al.Retinal vessel segmentation using the 2d gabor wavelet and supervised classification[J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1214-1222.
url: http://dx.doi.org/10.1109/TMI.2006.879967
[11] Gold S, Rangarajan A. A graduated assignment algorithm for graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 377-388.
url: http://dx.doi.org/10.1109/34.491619
[12] Leordeanu M, Hebert M. A spectral technique for correspondence problems using pairwise constraints [C]// IEEE International Conference on Computer Vision. IEEE, 2005: 1482-1489.
[13] Cour T, Srinivasan P, SHI Jianbo. Balanced graph matching [C]// NIPS: Neural Information Processing Systems Foundation. 2006: 313-320.
[14] Schellewald C, Schnörr C. Probabilistic subgraph matching based on convex relaxation [C]// Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer, 2005: 171-186.
[15] Duchenne O, Bach F, Kweon I, et al.A tensor-based algorithm for high-order graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2383-2395.
url: http://dx.doi.org/10.1109/TPAMI.2011.110
[16] Zass R, Shashua A. Probabilistic graph and hypergraph matching [C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-8.
[17] Kang U, Hebert M, Park S. Fast and scalable approximate spectral graph matching for correspondence problems [C]// Information Sciences 220. Online Fuzzy Machine Learning and Data Mining. 2013: 306-318.
[18] CHUI Haili, Rangarajan A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2): 114-141.
url: http://dx.doi.org/10.1016/S1077-3142(03)00009-2
[1] LUO Zhihao, LI Jin, YUE Kun, MAO Yuyuan, LIU Yan. Mining Top-k summarization patterns for knowledge graphs[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 194-202.
[2] LAN Chao, ZHANG Yong, XING Chunxiao. Distributed Top-k subgraph matching[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(8): 871-877.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd