Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (5) : 575-583     DOI:
Orginal Article |
HydroMP: A cloud computing based platform for hydraulic modeling and simulation service
Ronghua LIU1,Jiahua WEI1(),Yanzhang WENG1,Guangqian WANG1,Shuang TANG2
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
Download: PDF(1627 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Computing accuracy in large CFD problems is restricted by the computation cost. A hydraulic modelling platform (HydroMP) was constructed using computing cloud to reduce costs and to provide a uniform interface between the dataset and the model for hydraulic models. This paper gives a generic integration method for hydraulic models and a scheduling mode for the cloud computing. The system includes the models and computing resources, including the data interface, model calls and interactions and computations of resource allocation using Web Services, XML(Extensible Markup Language) and OpenMI(Open Model Interface). This design assures that the cloud computing platform can conveniently call the models, exchange data between the servers and the clients, and dynamically allocate the computing resources including multiple cores and multiple nodes. The platform with the integrated flow model is used to analyze the hydraulic response to a change in the discharge of the South-to-North Water Diversion Project, which is a multi-client, multi-level and multi-scheme simulation. The results indicate that this model improves the computational efficiency and compatibility. This hydraulic computing model based on cloud computing theory allows multiple schemes be solved simultaneously using multiple clients in a WAN Internet and multiple users. The cloud computing model lowers the threshold for using HPC resources and improves the utilization efficiency of computation resources.

Keywords cloud computing      hydraulic models      model-integration      Web Services     
ZTFLH:     
Fund: 
Issue Date: 15 May 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ronghua LIU
Jiahua WEI
Yanzhang WENG
Guangqian WANG
Shuang TANG
Cite this article:   
Ronghua LIU,Jiahua WEI,Yanzhang WENG, et al. HydroMP: A cloud computing based platform for hydraulic modeling and simulation service[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 575-583.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I5/575
  
  
  
  
  
运行阶段 调用过程 参数
初始化 Initialize() Simulation
GetComptime() Simulation
创建管道 Validate() Simulation
Create_Pipe() pipeID
数据交换 SimuConvert2ByteStr() Simulation
数据传输 SimustrTransfer() SimuByteString
数值计算 PerformTimestep() TimeStepNum
GetResult() SID, Timespan
SaveState() State
ClearState() StateID
完成 Resultupload() ResultArray
Releasecache() SID
  
工况 渠首通过流量占比 /% 变化用时/min 方案计算范围
初始时刻 终止时刻 渠首流量变化 闸门开度 分水口流量
1 70 50 10 10 10 全线
2 70 10 30 30 30 全线
3 70 80 10 10 10 全线
4 10 70 30 30 30 全线
5 70 10 30 30 30 黄河以南段和黄河以北段
  
  
项目 性能
头节点及服务器 16核(2.4 GHz), 156 GB内存
计算节点 20个计算节点,单计算节点含24核(2.4 GHz)、 32 GB内存。
  
序号 方案名 计算时长/h 所选模型 模型类型 计算时间/s 原计算时间/s 加速比
1 工况1 2 000 JPWSPC-SC 串行集成 415 400
2 工况2 2 000 JPWSPC-SC 串行集成 400 398
3 工况3 2 000 JPWSPC-MPI 并行集成 56 390 6.9
4 工况4 2 000 JPWSPC-MPI 并行集成 54 425 7.87
5 工况5 2 000 JPWSPC-MPI 并行集成 61 388 6.26
  
[1] Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289.
url: http://dx.doi.org/10.1016/0045-7825(74)90029-2
[2] 张刚,解建仓,罗军刚. 洪水预报模型组件化及应用[J], 水利学报, 2011, 42(12): 1479-1486. ZHANG Gang, XIE Jiancang, LUO Jungang. Componentized model of flood forecast and its application[J]. Journal of Hydraulic Engineering, 2011, 42(12): 1479-1486. (in Chinese)
[3] Gregersen J B, Gijsbers P J A, Westen S J P. OpenMI: Open modelling interface[J]. Journal of Hydroinformatics, 2007, 9(3): 175-191.
url: http://dx.doi.org/10.2166/hydro.2007.023
[4] Bulatewicz T, Allen A, Peterson J M, et al.The simple script wrapper for OpenMI: Enabling interdisciplinary modelling studies[J]. Environmental Modelling & Software, 2013, 39: 283-294.
[5] Sun A. Enabling collaborative decision-making in watershed management using cloud-computing services[J]. Environmental Modelling & Software, 2013, 41: 93-97.
[6] Burger C M, Kollet S, Schumacher J, et al.Introduction of a web service for cloud computing with the integrated hydrologic simulation platform ParFlow[J]. Computers & Geosciences, 2012, 48: 334-336.
[7] Ari I, Muhtaroglu N. Design and implementation of a cloud computing service for finite element analysis [J]. Advances in Engineering Software, 2013, 60-61: 122-135.
url: http://dx.doi.org/10.1016/j.advengsoft.2012.10.003
[8] Horsburgh J S, Tarboton D G, Maidment D R, et al.A relational model for environmental and water resources data[J]. Water Resources Research, 2008, 44(5): W05406.
[9] Horsburgh J S, Tarboton D G, Schreuders K A T, et al. HydroServer: A platform for publishing space-time hydrologic datasets [Z/OL]. (2013-06-09). http://his.cuahsi.org/documents/JSH_SpringRunoff_HydroServer_2012.pdf.
[10] Ames D P, Horsburgh J S, Cao Y, et al.HydroDesktop: Web services-based software for hydrologic data discovery, download, visualization, and analysis[J]. Environmental Modelling & Software, 2012, 37: 146-156.
[11] Booch G, Maksimchuk R A, Engle M W, et al.Object-Oriented Analysis and Design with Applications[M]. Boston, USA: Addison Wesley, 2007.
[12] 周振红,任慧,杜丽平. Fortran DLL 组件集成到. NET平台(一)[J]. 武汉大学学报: 工学版, 2005, 38(4): 100-104. ZHOU Zhenhong, REN Hui, DU Liping. Fortran DLL component being integrated into Microsoft. NET framework[J]. Engineering Journal of Wuhan University, 2005, 38(4): 100-104. (in Chinese)
[13] 朱仕杰,南卓铜,陈昊,等. 基于Web Service的在线水文模型服务研究[J]. 遥感技术与应用, 2010, 25(6): 853-859. ZHU Shijie, NAN Zhuotong, CHEN Hao, et al.Online hydrological model service using web service[J]. Remote Sensing Technology and Application, 2010, 25(6): 853-859. (in Chinese)
url: http://118.145.16.217/magsci/article/article?id=1134021
[14] ZHU Dejun, CHEN Yongcan, WANG Zhiyong, et al.Simple,robust, and efficient algorithm for gradually varied subcritical flow simulation in general channel networks[J]. Journal of Hydraulic Engineering—ASCE, 2011, 137(7): 766-774.
url: http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000356
[1] CAO Laicheng, LI Yuntao, WU Rong, GUO Xian, FENG Tao. Multi-key privacy protection decision tree evaluation scheme[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 862-870.
[2] LI Qing, FAN Yiping, LI Dachuan, JIANG Xin, LIU Enyu, CHEN Jia. Architecture of a microservice-based flight management system simulation[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(7): 589-596.
[3] WANG Kai, LIU Ronghua, WEI Jiahua, LIU Qi, WANG Guangqian. Model integration methods in the hydro-modeling platform (HydroMP) based on cloud computing[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 1006-1015.
[4] LI Taoshen, LIU Qing, HUANG Ruwei. Multi-user fully homomorphic encryption scheme based on proxy re-encryption for cloud computing[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 143-149.
[5] LIU Jinzhao, ZHOU Yuezhi, ZHANG Yaoxue. Wavelet-based approach for anomaly detection of online services in cloud computing systems[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 550-554.
[6] LI Yu, ZHAO Yong, GUO Xiaodong, LIU Guole. An assurance model for accesscontrol on cloud computing systems[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 432-436.
[7] WANG Yuding, YANG Jiahai. Data access control model based on data's role and attributes for cloud computing[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1150-1158.
[8] LIU Yang, WEI Wei. Fast Nash bargaining algorithm for resource scheduling problems with a large number of media streaming channels[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1056-1062.
[9] Zhihua WANG, Haibo PANG, Zhanbo LI. Access control for Hadoop-based cloud computing[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(1): 53-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd