Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (5) : 607-612     DOI:
Orginal Article |
Ozone-biological activated carbon treatment of DBP in high-bromide water
Hongwei YANG1(),Haoyu WANG1,Yunxia LIU2,Wenjun LIU1,Shaoxia YANG2
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Renewable Energy School, North China Electric Power University, Beijing 102206, China
Download: PDF(1346 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Guide   
Abstract  

The disinfection by-product (DBP) formation of high-bromide water was evaluated before and after ozone and biological activated carbon (O3-BAC) treatment. The objective is to remove trihalomethanes (THMs) and haloacetic acids (HAAs) formed by adding chlorine. The results showed that the O3-BAC treatment reduced the total trihalomethanes (TTHM) and nine haloacetic acid (HAA9) by 20 μg/L. The inhibitory rate was above 30%. Precursors of chloro-byproducts (Cl-DBPs) like chloroform, dichloroacetic acid and tichloroacetic acid were also removed. Chloriation of high-bromide water increases the proportion of bromo-byproducts (Br-DBPs) such as bromform, bromoacetic acid and dibromoacetic acid after the pre-ozonation. The BAC treatment reduces the Br-DBP less than that of Cl-DBPs, which resulted in further increases of the Br-DBP proportion.

Keywords ozone (O3)      biological activated carbon (BAC)      trihalomethanes (THMs)      haloacetic acid (HAAs)      bromide     
ZTFLH:     
Issue Date: 15 May 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongwei YANG
Haoyu WANG
Yunxia LIU
Wenjun LIU
Shaoxia YANG
Cite this article:   
Hongwei YANG,Haoyu WANG,Yunxia LIU, et al. Ozone-biological activated carbon treatment of DBP in high-bromide water[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 607-612.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I5/607
指标 平均值 范围
pH 7.9 7.6~8.5
Br-/(μg·L-1) 135 120~150
CODMn/(mg·L-1) 2.4 2.2~3.1
UV254/(cm-1) 0.047 0.039~0.053
DOC/(mg·L-1) 2.51 2.24~2.68
碱度/(mg·L-1,以CaCO3计) 174 167~183
NH3-N/(mg·L-1) 0.15 0.05~0.23
  
  
  
  
  
[1] 舒诗湖, 严敏, 苏定江, 等. 臭氧-生物炭对有机物分子量分布的影响[J]. 中国环境科学, 2007, 27(5): 638-641. SHU Shihu, YAN Min, SU Dingjiang, et al.Influence of ozonation/BAC process on molecular weight distribution of organic matter[J].China Environmental Science, 2007, 27(5): 638-641. (in Chinese)
[2] von GuntenU. Ozonation of drinking water: Part I. kinetics and product formation[J]. Water Research, 2003, 37(7): 1443-1467.
url: http://dx.doi.org/10.1016/S0043-1354(02)00457-8
[3] von GuntenU. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine[J]. Water Research, 2003, 37(7): 1469-1487.
url: http://dx.doi.org/10.1016/S0043-1354(02)00458-X
[4] Kleiser G, Frimmel F H. Removal of precursors for disinfection by-products (DBPs)—Differences between ozone and OH-radical-induced oxidation[J]. The Science of the Total Environment, 2000, 256(1): 1-9.
url: http://dx.doi.org/10.1016/S0048-9697(00)00377-6
[5] Norwood D L, Johnson J D, Christman R F, et al.Reactions of chlorine with selected aromatic models of aquatic humic material[J]. Environmental Science & Technology, 1980, 14(2): 187-190.
[6] Swietlik J, Dabrowska A, Raczyk-Stanislawiak U, et al.Ractivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research, 2004, 38(3): 547-558.
url: http://dx.doi.org/10.1016/j.watres.2003.10.034
[7] Amy G, Siddiqui M, Ozekin K, et al.Empirically Based Models for Predicting Chlorination and Ozonation Disinfection By-product: Trihalomethanes, Haloacetic Acids, Chloral Hydrate, and Bromate. EPA-815-R-98-005 [R]. Washington DC, USA: Office of Water of US Environmental Protection Agency, 1998.
[8] 李波, 曲久辉, 刘会娟, 等. 含溴离子水氯化过程中消毒副产物生成和分配的研究[J]. 科学通报, 2007, 52(17): 2071-2076. LI Bo, QU Jiuhui, LIU Huijuan, et al.Study on DBP formation and speciation during chlorination of water rich in bromide[J]. Chinese Science Bulletin,2007, 52(17): 2071-2076.
url: http://118.145.16.217/magsci/article/article?id=19078374
[9] Eric C W, Fernando L R. Effect of ozonation on trihalomethane and haloacetic acid formation and speciation in a full-scale distribution system[J].Ozone: Science & Engineering, 2011, 33(1): 14-22.
[10] Westerhoff P, Chao P, Mash H. Reactivity of natural organic matter with aqueous chlorine and bromine[J].Water Research, 2004, 38(6): 1502-1513.
url: http://dx.doi.org/10.1016/j.watres.2003.12.014
[11] Summers R S, Hopper S M, Solarik G, et al.Assessing DBP yield: Uniform formation conditions[J]. Journal American Water Works Association, 1996, 88(6): 80.
[12] USEPA 551.1. Determination of Chlorination Disinfection Byproducts and Chlorinated Solvents in Drinking Water by Liquid-liquid Extraction and Gas Chromatography with Electron-Capture DetectionSEPA 551.1. Determination of Chlorination Disinfection Byproducts and Chlorinated Solvents in Drinking Water by Liquid-liquid Extraction and Gas Chromatography with Electron-Capture Detection[S]. Ohin, USA: National Exposure Research Laboratory Office of Research and Development, 1990.
[13] USEPA 552.3. Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction Derivatization and Gas Chromatography with Electron-Capture Detection[S]. Ohin, USA: Technical Support Center Office of Ground Water and Drinking Water, 2003.
[14] Gallard H,von Gunten U. Chlorination of natural organic matter: Kinetics of chlorination and of THM formation[J]. Water Research, 2002, 36(1): 65-74.
url: http://dx.doi.org/10.1016/S0043-1354(01)00187-7
[15] ZHANG Xiangru, Echigo S, LEI Hongxia, et al.Effects of temperature and chemical addition on the formation of bromoorganic DBPs during ozonation[J]. Water Research, 2005, 39(2-3): 423-435.
url: http://dx.doi.org/10.1016/j.watres.2004.10.007
[16] XIE Yuefeng, David A R, Denise C S. Analyzing HAAs and ketoacids without diazomethane[J]. Journal American Water Works Association, 1998, 90(4): 131-138.
[17] XIE Yuefeng. Disinfection Byproducts in Drinking Water Formation, Analysis and Control[M]. Boca Raton, USA: Lewis Publishers, 2004.
[1] Kexin DENG. Retinal image registration based on hyper-edge graph matching[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 568-574.
[2] Chen HAO, Fu LI, Jiong GUO. Simulations of mixing in the pebble flow of a pebble bed HTR[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 624-628.
[3] Pengfei LIN, Xiaojian ZHANG, Chao CHEN, Jun WANG. Treatment of molybdenum-containing wastewater and drinking water[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 613-618.
[4] Qi MIN, Yuanyuan DUAN, Xiaodong WANG. Lattice Boltzmann method for the fluid saturation density based on the volume translated Peng-Robinson equation of state[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 619-623.
[5] Zhenbo WANG, Jun ZHANG, Yiming LUOSUN. Flexural performance of textile reinforced cementitious composite with sprinkling water hardening technique[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 551-555.
[6] Feng JIANG, Ziwei ZHUANG, Zhenzhong ZHANG, Jiying WEI. Evaporation-condensation technology for testing the efficiency of HEPA filter media[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 629-632.
[7] Xinrong CAO, Lei LIU, Dongyang CAI, Peng GUO, Jintian TANG. Statistical analyses of ballistocardiogram features for cardiac disease diagnosis[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 633-637.
[8] Wu XU, Qing YU, Guohuang YAO. Effect of preload on the axial capacity of CFST reinforced concrete columns[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 556-562.
[9] Ya WEI, Xiangjie YAO. Tensile creep model for concrete subject to constant restraints[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 563-567.
[10] Ronghua LIU, Jiahua WEI, Yanzhang WENG, Guangqian WANG, Shuang TANG. HydroMP: A cloud computing based platform for hydraulic modeling and simulation service[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 575-583.
[11] Na ZHAO, Zhaoyin WANG, Baozhu PAN, Zhiwei LI, Xuehua DUAN. Ecological functions of riverbed structures with different strengths in the Xiaojiang River basin[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 584-589.
[12] Hanbo YANG, Huafang LV, Qingfang HU, Huimin LEI, Dawen YANG. Comparison of parametrization methods for calculating the downward long-wave radiation over the North China Plain[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 590-595.
[13] Fenjie LONG, Zhenxing LONG, Xiaomeng WANG. Effect of equity constraints on housing prices in rising markets[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 596-601.
[14] Hong ZHANG, Yang ZHANG, Xuanbing CHEN. Experimental evaluation of Beijing resale housing information diffusion during information transmission[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 602-606.
[15] Zhiqiang ZHANG, Shanying HU, Dingjiang CHEN, Jingzhu SHEN, Fengguang DU. Uncertainty analysis and optimization of the fuel ethanol system[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 643-648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd