Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2014, Vol. 54 Issue (5) : 619-623     DOI:
Orginal Article |
Lattice Boltzmann method for the fluid saturation density based on the volume translated Peng-Robinson equation of state
Qi MIN1(),Yuanyuan DUAN2,Xiaodong WANG3
1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
2. Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
3. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
Download: PDF(1285 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The lattice Boltzmann pseudo-potential model has few parameters for real fluids. In this study, the volume translated Peng-Robinson equation of state (MPR) was incorporated into the lattice Boltzmann pseudo-potential model with two parameters, the acentric factor and the critical compressibility, used to determine the real fluid parameters. The MPR was used to calculate the dimensionless liquid and vapor saturated densities of eight kinds of fluids with the results compared with the Peng-Robinson(PR) equation of state and experimental data. Both the MPR and the PR equation of state can accurately describe the dimensionless saturated vapor density. The simulation results for the saturated liquid density given by the MPR agree well with experimental data for simple non-polar fluids such as Ar, N2 and O2. For more complex fluids, the saturated liquid density simulated by both the MPR and the PR equation of state were not good, but the MPR result was better than the PR equation of state result. Generally speaking,the MPR gives better predictions than the PR equation of state for simulations of fluid saturated densities.

Keywords lattice Boltzmann      liquid vapor flow      equation of state      volume translation      saturation density     
ZTFLH:     
Fund: 
Issue Date: 15 May 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi MIN
Yuanyuan DUAN
Xiaodong WANG
Cite this article:   
Qi MIN,Yuanyuan DUAN,Xiaodong WANG. Lattice Boltzmann method for the fluid saturation density based on the volume translated Peng-Robinson equation of state[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 619-623.
URL:  
http://jst.tsinghuajournals.com/EN/     OR     http://jst.tsinghuajournals.com/EN/Y2014/V54/I5/619
  
δa Ar N2 O2 CO2
MPR 0.046 0.056 0.082 0.155
PR 0.363 0.397 0.438 0.298
δa CH4 C2H6 C3H8 C4H10
MPR 0.082 0.186 0.168 0.264
PR 0.394 0.484 0.474 0.469
  
[1] 郭照立, 郑楚光, 李青. 流体动力学的格子Boltzmann方法 [M]. 北京: 科学出版社, 2009. GUO Zhaoli, ZHENG Chuguang, LI Qing. Theory and Applications of Lattice Boltzmann Method [M]. Beijing: Science Press, 2009. (in Chinese)
[2] 李维仲, 李爽. 用格子Boltzmann方法模拟液滴合并过程[J]. 热科学与技术, 2007, 6(3): 379-393. LI Weizhong, LI Shuang. Simulation of droplets coalescence process by lattice Boltzmann method[J]. Journal of Thermal Science and Technology, 2007, 6(3): 379-393. (in Chinese)
[3] Swift M R, Orlandini E, Osborn W R, et al.Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical Review. E, 1996, 54(5): 5041-5052.
url: http://dx.doi.org/10.1103/PhysRevE.54.5041
[4] Inamuro T, Ogata T, Tajima S, et al.A lattice Boltzmann method for incompressible two-phase flows with large density differences[J]. Journal of Computational Physics, 2004, 198(2): 628-644.
url: http://dx.doi.org/10.1016/j.jcp.2004.01.019
[5] Grunau D, Chen S Y, Eggert K. A lattice Boltzmann model for multiphase fluid-flows[J]. Physics of Fluids. A, Fluid Dynamics, 1993, 5(10): 2557-2562.
url: http://dx.doi.org/10.1063/1.858769
[6] Gunstensen A K, Rothman D H, Zaleski S, et al.Lattice Boltzmann Model of Immiscible Fluids[J]. Physical Review. A, 1991, 43(8): 4320-4327.
url: http://dx.doi.org/10.1103/PhysRevA.43.4320
[7] Shan X W, Chen H D. Lattice boltzmann model for simulating flows with multiple phases and components[J]. Physical Review. E, 1993, 47(3): 1815-1819.
url: http://dx.doi.org/10.1103/PhysRevE.47.1815
[8] Raiskinmaki P, Koponen A, Merikoski J, et al.Spreading dynamics of three-dimensional droplets by the lattice- Boltzmann method[J]. Computational Materials Science, 2000, 18(1): 7-12.
url: http://dx.doi.org/10.1016/S0927-0256(99)00095-6
[9] Hyvaluoma J, Raiskinmaki P, Jasberg A, et al.Evaluation of a lattice-Boltzmann method for mercury intrusion porosimetry simulations[J]. Future Generation Computer Systems, 2004, 20(6): 1003-1011.
url: http://dx.doi.org/10.1016/j.future.2003.12.013
[10] Martys N S, Chen H D. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method[J]. Physical Review. E, 1996, 53(1): 743-750.
url: http://dx.doi.org/10.1103/PhysRevE.53.743
[11] Pan C, Hilpert M, Miller C T. Lattice-Boltzmann simulation of two-phase flow in porous media[J]. Water Resources Research, 2004, 40(1).
[12] Qian Y H, Orszag S A. Scalings in diffusion-driven reaction a+B-]C-numerical simulations by lattice BGK models[J]. Journal of Statistical Physics, 1995, 81(1-2): 237-253.
url: http://dx.doi.org/10.1007/BF02179978
[13] Yuan P, Schaeter L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101.
url: http://dx.doi.org/10.1063/1.2187070
[14] 林鸿. 气液界面张力的密度梯度理论模型和实验研究 [D]. 北京: 清华大学, 2006. LIN Hong. Gradient Theory Modeling and Experimental Investigation of the Surface Tension [D]. Beijing: Tsinghua University, 2006.(in Chinese)
[15] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases .1. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525.
url: http://dx.doi.org/10.1103/PhysRev.94.511
[16] Sukop M C, Thorne D T. Lattice Boltzmann Modeling[M]. New York, USA: Springer, 2006.
[17] Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial and Engineering Chemistry, Fundamentals, 1976, 15(1): 59-64.
url: http://dx.doi.org/10.1021/i160057a011
[18] Tegeler C, Span R, Wagner W. A new equation of state for argon covering thefluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa[J]. Journal of Physical and Chemical Reference Data, 1999, 28(3): 779-850.
url: http://dx.doi.org/10.1063/1.556037
[19] Dewan R K, Mehta S K. Correlation between topological features and surface tension of binary liquid mixtures[J]. Monatshefte für Chemie, 1990, 121(8-9): 593-600.
url: http://dx.doi.org/10.1007/BF00809761
[20] Setzmann U, Wagner W. A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa[J]. Journal of Physical and Chemical Reference Data, 1991, 20(6): 1061-1151.
url: http://dx.doi.org/10.1063/1.555898
[21] Friend D G, Ingham H, Ely J F. Thermophysical properties of ethane[J]. Journal of Physical and Chemical Reference Data, 1991, 20(2): 275-347.
url: http://dx.doi.org/10.1063/1.555881
[22] Miyamoto H, Watanabe K. A thermodynamic property model for fluid-phase propane[J]. International Journal of Thermophysics, 2000, 21(5): 1045-1072.
url: http://dx.doi.org/10.1023/A:1026441903474
[23] Miyamoto H, Watanabe K. Thermodynamic property model for fluid-phase n-Butane[J]. International Journal of Thermophysics, 2001, 22(2): 459-475.
url: http://dx.doi.org/10.1023/A:1010722814682
[1] LIU Qian, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Numerical simulation of saturated steam condensation heat exchange in a vertical channel[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1273-1281.
[2] ZHOU Mingshuo, DING Siyu, WANG Xingjian. Review of subgrid models of the equation of state in the large eddy simulation of transcritical and supercritical flows and combustion[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 473-486.
[3] YANG Jiapei, MA Xiao, LEI Timan, LUO Kai H., SHUAI Shijin. Numerical simulations for optimizing the liquid water transport in the gas diffusion layer and gas channels of a PEMFC[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 580-586.
[4] HE Qiang, LI Yongjian, HUANG Weifeng, LI Decai, HU Yang, WANG Yuming. Parallel simulations of large-scale particle-fluid two-phase flows with the lattice Boltzmann method based on an MPI+OpenMP mixed programming model[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 847-853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd